3143: [Hnoi2013]游走

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3576  Solved: 1608
[Submit][Status][Discuss]

Description

一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

Sample Input

3 3
2 3
1 2
1 3

Sample Output

3.333

HINT

边(1,2)编号为1,边(1,3)编号2,边(2,3)编号为3。

Source

[Submit][Status][Discuss]

如果是给你一幅图,让你求随机游走到每个点的期望次数,那就是裸的期望高斯消元原题。

这道题不难发现贪心的将走的次数最多的边权值设为最小一定最优,而边的次数又可以由两端点的期望次数求出,所以问题轻松转化为上面那个原题。

边$<u,v>$走的期望次数为$\frac{E[u]}{deg[u]}+\frac{E[v]}{deg[v]}$

高斯消元竟然忘了。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,M=;
int n,m,u[M],v[M],d[N];
double ans,a[N][N],x[N],w[M]; void Gauss(){
rep(i,,n){
int k=i;
rep(j,i+,n) if (fabs(a[k][i])<fabs(a[j][i])) k=j;
if (k!=i) rep(j,i,n+) swap(a[i][j],a[k][j]);
rep(j,i+,n){
double t=a[j][i]/a[i][i];
rep(k,i,n+) a[j][k]-=a[i][k]*t;
}
}
for (int i=n; i; i--){
rep(j,i+,n) a[i][n+]-=a[i][j]*x[j];
x[i]=a[i][n+]/a[i][i];
}
} int main(){
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,m) scanf("%d%d",&u[i],&v[i]),d[u[i]]++,d[v[i]]++;
rep(i,,m) a[u[i]][v[i]]+=./d[v[i]],a[v[i]][u[i]]+=./d[u[i]];
rep(i,,n-) a[i][i]=-;
rep(i,,n) a[n][i]=;
a[][n+]=-; a[n][n]=; Gauss();
rep(i,,m) w[i]=x[u[i]]/d[u[i]]+x[v[i]]/d[v[i]];
sort(w+,w+m+);
rep(i,,m) ans+=(m-i+)*w[i];
printf("%.3lf\n",ans);
return ;
}

[BZOJ3143][HNOI2013]游走(期望+高斯消元)的更多相关文章

  1. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  2. BZOJ3143 [Hnoi2013]游走 【高斯消元】

    题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  3. [HNOI2013]游走 期望+高斯消元

    纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...

  4. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  5. [luogu3232 HNOI2013] 游走 (高斯消元 期望)

    传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...

  6. bzoj3143游走——期望+高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条 ...

  7. 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元

    如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...

  8. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  9. bzoj 3143 [Hnoi2013]游走【高斯消元+dp】

    参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...

随机推荐

  1. Vue 脱坑记

    问题汇总 Q:安装超时(install timeout) 方案有这么些: cnpm : 国内对npm的镜像版本 /* cnpm website: https://npm.taobao.org/ */ ...

  2. cookie知识点概述

    cookie是什么 这个讲起来很简单,了解http的同学,肯定知道,http是一个不保存状态的协议,什么叫不保存状态,就是一个服务器是不清楚是不是同一个浏览器在访问他,在cookie之前,有另外的技术 ...

  3. Java的继承和多态

    看了博客园里面的一个文章,关于java的继承和多态: class A ...{ public String show(D obj)...{ return ("A and D"); ...

  4. webgote的例子(3)Sql注入(SearchPOST)

    Sql注入(Search/POST) (本章内容):post的方式进行注入 今天来讲一下sql注入的另一个例子(post) 上一个用的是get请求的方法将我们的参数传到服务器进行执行 上图中的标红是需 ...

  5. 使用navicat for sqlserver 把excel中的数据导入到sqlserver数据库

    以前记得使用excel向mysql中导入过数据,今天使用excel向sqlserver2005导入了数据,在此把做法记录一下 第一步:准备excel数据,在这个excel中有3个sheet,每个she ...

  6. Python 正则表达式、re模块

    一.正则表达式 对字符串的操作的需求几乎无处不在,比如网站注册时输入的手机号.邮箱判断是否合法.虽然可以使用python中的字符串内置函数,但是操作起来非常麻烦,代码冗余不利于重复使用. 正则表达式是 ...

  7. 003_循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate)的区别

    表示“重复”这个含义的词有很多, 比如循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate). 循环算是最基础的概念, 凡是重复执行一段代码, 都可以称 ...

  8. pip安装模块时:error: command 'gcc' failed with exit status 1

    用安装python模块出现error: command 'gcc' failed with exit status 1 问题: gcc编译缺少模块 解决方法: yum install gcc libf ...

  9. 使用extjs做的一个简单grid

    <%@ page language="java" contentType="text/html; charset=utf-8" pageEncoding= ...

  10. CGI、FastCGI和php-fpm的概念和区别

    CGI是HTTP Server和一个独立的进程之间的协议,把HTTP Request的Header设置成进程的环境变量,HTTP Request的正文设置成进程的标准输入,而进程的标准输出就是HTTP ...