lesson 4: counting elements

  • exercise
  • Problem: You are given an integer m (1 <= m <= 1,000,000) and two non-empty, zero-indexed arrays A and B of n integers, a0,a1,...,an−1 and b0,b1,...,bn−1 respectively (0 <= ai,bi <= m).

For every element of array B, we assume that we will swap it with some element from array A. The difference d tells us the value from array A that we are interested in swapping, because only one value will cause the two totals to be equal. The occurrence of this value can be found in constant time from the array used for counting.

NOTE:

  • 假设A中ai和B中的bj交换可以满足要求,则有:A+bj-ai == B+ai-bj
  • 假设 d = bj - ai, 则有 A + d = B - d
  • 故有A-B = 2d, 因此,两个数组的差必须是2的整数倍,即偶数,否则不存在交换可以满足题意的元素
  • 然后由d = bj - ai,得到在A中存在元素ai = bj - d。我们可以对每一个B中的元素bj,查找A中是否有bj-d 即可。
def counting(A, m):
n = len(A)
count=[0]*(m+1)
for k in xrange(n):
count[A[k]] += 1
return count #from collections import Counter
def fast_solution(A, B, m):
n = len(A)
sum_a = sum(A)
sum_b = sum(B)
d = sum_b - sum_a
if d%2==1:
return False
d//=2
count = counting(A, m)
for i in xrange(n):
if 0 <= B[i] - d <= m and count[B[i] - d] > 0:
return True
return False

根本目的是找到A中存在元素ai = bj - d, 前面的Bj -d 范围在 [0,m]只是限定count的范围,防止越界!

若使用collections 的Counter 函数计数,则可以直接查看是否存在bj-d这个元素即可,即count[bj-d] > 0要求。

我们也可以直接用for everyone B element, 判断if (bj - d) in A 也可以,但是这样的复杂度又变高了, 变成O(N^2)了。因为,每次查找(bj - d) 是否in A 的时候就要N次遍历查找。

因此,还是用计数的方式好,首先统计A中的元素,以后只要O(1)的时间查找是否存在我们需要的ai。

可以有如下解答:

so,we can do it as follows:

from collections import Counter
def fast_solution(A, B, m):
n = len(A)
sum_a = sum(A)
sum_b = sum(B)
d = sum_b - sum_a
if d%2==1:
return False
d//=2
count = Counter(A, m)
for i in xrange(n):
if count[B[i] - d] > 0:
return True
return False

1. FrogRiverOne----[100%]

Find the earliest time when a frog can jump to the other side of a river.

The goal is to find the earliest time when the frog can jump to the other side of the river. The frog can cross only when leaves appear at every position across the river from 1 to X (that is, we want to find the earliest moment when all the positions from 1 to X are covered by leaves). You may assume that the speed of the current in the river is negligibly small, i.e. the leaves do not change their positions once they fall in the river.

each element of array A is an integer within the range [1..X].

  • 鉴于元素的范围,所以,可以用list保存出现过的元素,比较list的长度跟X的关系,就可以得到第一次出现X的位置

  • 这里需要考虑的一个问题是,是第一次访问过所有的元素种类,停留的位置不要求必须是X元素;另一种情况是,不仅仅要求访问过所有的元素种类,还要最后停留在X元素上,再算达到要求。本题解法是第一种情况。

  • 若是第二种情况的话,只需要在set的长度等于X后,多加一次判断,找到接下来第一次出现X的位置即好。

  • 鉴于O(N) -time O(X)-space ,每次在保存过的元素中查找费时间,可以直接用set保存,因为set加入新元素的时候,重复元素不会再次加入,这里应该看看python源码set怎么加入的。

def solution(X, A):
# write your code in Python 2.7
visited = set()
for idx,elem in enumerate(A):
visited.add(elem)
if len(visited) == X:
return idx
return -1

2. PermCheck----[100%]

Check whether array A is a permutation.

note:

思路一:

  • 用最大值是否等于set的长度来测试.

    仔细看好题意, 比如是要求从1 开始的list ,

    就不需要记最小的值,求长度了,只要记下最大值。
def solution(A):
# write your code in Python 2.7
#A.sort() # Nlog(N)
if len(A) == 1:
return 1 if (A[0] == 1) else 0 sigle = set()
#maxelem, minelem = A[0], A[0] #needless minelem,owing to from 1 !!
maxelem = A[0]
for elem in A:
if elem not in sigle:
sigle.add(elem)
if elem > maxelem:
maxelem = elem
else:
#print "test"
return 0
#print sigle
return 1 if (len(sigle) == maxelem) else 0 #return 1 if (A[-1]-A[0]+1) == len(A) else 0

思路二:

  • 如果元素的取值是在N个范围内,即数组有N个元素,每个元素范围是[1,N] ,则我们可以用求sum的方式来做 [score :100%]
def solution(A):
# write your code in Python 2.7
set_a = set(A) length = len(set_a)
total = length*(length+1)//2
tmp = sum(A)
return 1 if total == tmp else 0

3. MissingInteger----[100%]

Find the minimal positive integer not occurring in a given sequence.

note:

  • O(N) time & space complexity,if sort, will exceed.
  • 考虑到不能排序,从解空间出发考虑。返回解一定会在1~len(所给数组)+1的区间。用map记录这些数据是否都在,不在的话,找最小的空缺,都在的时候就是map/list最后一个数加1.
def solution(A):
# write your code in Python 2.7
length = len(A)
tmp = [True]*(length + 1)
#print tmp
for elem in A:
if 0 < elem < length+1:
tmp[elem-1] = False
for idx,elem in enumerate(tmp):
if elem == True:
return idx+1
return length +1
def solution(A):
# write your code in Python 2.7
length = len(A)+1
tmp = [True]*length
for a in A:
if 0 < a < length:
tmp[a-1] = a
for idx, a in enumerate(tmp):
if a is True:
return idx+1
#return length

将tmp数组增大一位,就不需要最后考虑全部是有序的,再return length + 1了

4. MaxCounters

Calculate the values of counters after applying all alternating operations:increase counter by 1; set value of all counters to current maximum.

You are given N counters, initially set to 0, and you have two possible operations on them:

  • increase(X) − counter X is increased by 1,
  • max counter − all counters are set to the maximum value of any counter.

A non-empty zero-indexed array A of M integers is given. This array represents consecutive operations:

  • if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X),
  • if A[K] = N + 1 then operation K is max counter.

For example, given integer N = 5 and array A such that:

A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4

the values of the counters after each consecutive operation will be:

(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)

The goal is to calculate the value of every counter after all operations.

解法一:

  • Detected time complexity: O(N*M)
  • Test score 66%
  • Correctness 100% Performance 60%
  • 计算正确,但是时间复杂度不满足要求。
def solution(N, A):
# write your code in Python 2.7
ret = [0]*N
#print ret for elem in A:
if elem < (N + 1):
#print elem
#print ret
ret[int(elem -1)] += 1
else:
#tmp = max(ret)
#print "tmp",tmp
#ret = [tmp]*N
ret = [max(ret)]*N
#print "ret",ret
return ret

解法二

[100%] MaxCounters

Calculate the values of counters after applying all alternating operations: increase counter by 1; set value of all counters to current maximum.

note:

  • 分别记录上次update的值,在update的基础上,再记录当前最大值。

  • 有点类似操作系统的内存管理,按需分配的味道, 当出现缺页中断的时候再去分配内存。

  • 这里是当出现N+1的时候,再去update 上次没有update的元素,并且在最后一次需要再检查一次update

  • Detected time complexity:

    O(N + M)

def solution(N, A):
# write your code in Python 2.7
ret = [0]*N maxOfArray = 0
last_update = 0
tn = N + 1
for elem in A:
if elem < tn:
if ret[elem -1] < last_update:
ret[elem -1] = last_update ret[elem -1] += 1
if ret[elem -1] > maxOfArray:
maxOfArray = ret[elem -1]
else:
last_update = maxOfArray
#print "last_update",last_update
#ret = [maxOfArray]*N #print "ret",ret
for elem in xrange(N):
if ret[elem] < last_update:
ret[elem] = last_update
return ret
def solution(N, A):
# write your code in Python 2.7
tn = N + 1
maxOfCounter = 0
lastUpdate = 0
ret = [0]*N
for a in A:
if a < tn:
if ret[a-1] < lastUpdate :
ret[a-1] = lastUpdate
ret[a-1] += 1
if ret[a-1] > maxOfCounter:
# update max counter
maxOfCounter = ret[a-1]
else:
lastUpdate = maxOfCounter
for elem in xrange(N):
if ret[elem-1] < lastUpdate:
ret[elem-1] = lastUpdate
return ret

counting elements--codility的更多相关文章

  1. leetcode 30 day challenge Counting Elements

    Counting Elements Given an integer array arr, count element x such that x + 1 is also in arr. If the ...

  2. List 用法和实例(转载)

    写在粘贴复制前:英文的感觉也可以,也能看的懂,多看看英文资料没坏处的 Problem. You have questions about the List collection in the .NET ...

  3. C# 泛型List用法

    C# List Examples by Sam Allen - Updated September 6, 2009 Problem. You have questions about the List ...

  4. C# List 用法与示例

    Problem. You have questions about the List collection in the .NET Framework, which is located in the ...

  5. Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET

    Python -- 堆数据结构 heapq - I love this game! - 博客频道 - CSDN.NET Python -- 堆数据结构 heapq 分类: Python 2012-09 ...

  6. C++算法接口使用参考

    C++算法接口参考 算法参考:[algorithm] 编译:g++ -std=c++11 xxx_algorithm.cpp 运行:./a.out 1.保持原序列运算 all_of template ...

  7. MySQL Error 1215: Cannot add foreign key constraint

    MySQL Error 1215: Cannot add foreign key constraint DROP TABLE IF EXISTS `r_role_region`; CREATE TAB ...

  8. c++ 在指定长度的数组或者容器中,统计元素出现的次数(count)

    #include <iostream> // cout #include <algorithm> // count #include <vector> // vec ...

  9. Flink articles

    http://ictlabs-summer-school.sics.se/2015/slides/flink-advanced.pdf http://henning.kropponline.de/20 ...

随机推荐

  1. hdu1540线段树连续区间

    模板题>.<当初学了一波又忘了 #include<map> #include<set> #include<cmath> #include<queu ...

  2. ES的Zen发现机制

    ES的Zen发现机制 Zen发现机制是ElasticSearch默认的发现模块.它提供的是单播发现,但是可被拓展为支持云环境下或者其他形式的发现机制.zen 发现模块集成了其他模块,如在发现期间,节点 ...

  3. LINUX系统下PXE网络安装虚拟机

    PXE(preboot execute environment),预启动执行环境.由于安装系统的时候,有时候是大批量的安装:这时使用磁盘或虚拟机进行单个安装,效率太差:所以我们开始使用PXE网络安装L ...

  4. ADO Recordset 对象链接

    http://baike.baidu.com/link?url=4Xdc46R8M5uj-BbOGaH761N5oDEYlGQJFeR2WbPwx1iQBusAUKU3qbWcHZCMmayatj9n ...

  5. SPI总线协议介绍

    http://blog.csdn.net/ce123_zhouwei/article/details/6897293 https://www.cnblogs.com/yangguang-it/p/71 ...

  6. 微信小程序自定义tabbar的问题

    个人感觉小程序的tab样式自定义的能力有所欠缺,不够美观,于是今天自己diy了一个tab 测试的时候发现,无论是使用navigator跳转(会出现点击的效果)还是用bindtap(触摸),因为没有定义 ...

  7. 《利用Python进行数据分析》笔记---第4章NumPy基础:数组和矢量计算

    写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...

  8. Faster R-CNN改进篇(一): ION ● HyperNet ● MS CNN

    一. 源起于Faster 深度学习于目标检测的里程碑成果,来自于这篇论文: Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time ob ...

  9. iOS TUN之避免UDP包ip分片

    iOS的NetworkExtension给应用暴露了一个虚拟网卡TUN设备,可以设置其MTU值.如果上层应用发送的IP包大于这个MTU就会被分片.(详见:http://blog.csdn.net/n5 ...

  10. IOS开发 多线程编程 - NSThread

    每个iOS应用程序都有个专门用来更新显示UI界面.处理用户的触摸事件的主线程,因此不能将其他太耗时的操作放在主线程中执行,不然会造成主线程堵塞(出现卡机现象),带来极坏的用户体验.一般的解决方案就是将 ...