【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割
【题意】给定n个点,点权为pi。m条边,边权为ci。选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利。n<=5000,m<=50000,0<=ci,pi<=100。
【算法】最大权闭合子图 或 最小割
【题解】网络流的复杂度是假的233大胆地写吧。
把边视为连向端点的点,就是最大权闭合子图了。
重点讲一下Amber论文中的最小割模型。
设$d_v$表示点v的邻边边权和,$g$表示一端选一端不选的边权和(即点集和其他点的割),那么:
$$2ans=-(-\sum_v d_v+g+2*\sum_v p_v)$$
为了方便求最小割,我们在右边整体加了个负号,这样我们就是求括号内的最小值了。
在网络流图中,对每个点x建一个点,S-x-T,割x-T表示在S割表示选,割S-x表示在T割表示不选,所以把选点的代价$2p_v-d_v$放在x-T上。
如果点u选而点v不选,那么边(u,v)就必须加入最小割,所以从u向v连边容量为边权,这样割掉u-T和S-v后还有通路S-u-v-T。
建图完毕后,图中有负权边。我们给所有节点加一个固定代价U(U足够大,无论选不选),这样显然不影响决策,就可以在S-x和x-T上+U,从而解决负权边的问题。
(最小割不能直接给所有边加权,这样会破坏边权大小关系,必须要从建图方面考虑不影响决策的代价)
最终答案就是$\frac{U*n-c[S,T]}{2}$。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,S,T,p[];
namespace nwf{
const int maxn=,maxm=,inf=0x3f3f3f3f;
int tot=,first[maxn],d[maxn],q[maxn],cur[maxn];
struct edge{int v,f,from;}e[maxm*];
void insert(int u,int v,int f){
tot++;e[tot].v=v;e[tot].f=f;e[tot].from=first[u];first[u]=tot;
tot++;e[tot].v=u;e[tot].f=;e[tot].from=first[v];first[v]=tot;
}
bool bfs(){
memset(d,-,sizeof(d));
d[S]=;
int head=,tail=;q[head]=S;
while(head<tail){
int x=q[head++];
for(int i=first[x];i;i=e[i].from)if(e[i].f&&d[e[i].v]==-){
d[e[i].v]=d[x]+;
q[tail++]=e[i].v;
}
}
return ~d[T];
}
int dfs(int x,int a){
if(x==T||a==)return a;
int flow=,f;
for(int& i=cur[x];i;i=e[i].from)
if(e[i].f&&d[e[i].v]==d[x]+&&(f=dfs(e[i].v,min(a,e[i].f)))){
e[i].f-=f;e[i^].f+=f;
flow+=f;a-=f;
if(a==)break;
}
return flow;
}
int dinic(){
int ans=;
while(bfs()){
for(int i=S;i<=T;i++)cur[i]=first[i];
ans+=dfs(S,inf);
}
return ans;
}
}
int main(){
scanf("%d%d",&n,&m);
S=;T=n+;int U;
for(int i=;i<=n;i++){
int u;
scanf("%d",&u);
nwf::insert(i,T,u*);
}
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
nwf::insert(u,v,w);nwf::insert(v,u,w);//
p[u]+=w;p[v]+=w;U=max(U,max(p[u],p[v]));
}
for(int i=;i<=n;i++){
nwf::insert(S,i,U);nwf::insert(i,T,U-p[i]);
}
printf("%lld",(1ll*U*n-nwf::dinic())/);
return ;
}
【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割的更多相关文章
- P4174 [NOI2006]最大获利 (最大权闭合子图)
P4174 [NOI2006]最大获利 (最大权闭合子图) 题目链接 题意 建\(i\)站台需要\(p_i\)的花费,当\(A_i,B_i\)都建立时获得\(C_i\)的利润,求最大的利润 思路 最大 ...
- BZOJ1497[NOI2006]最大获利——最大权闭合子图
题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...
- bzoj1497 [NOI2006]最大获利 最大权闭合子图
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路 最大权闭合子图的裸题 一开始知道是这个最大权闭合子图(虽然我不知道名字),但是我 ...
- COGS28 [NOI2006] 最大获利[最大权闭合子图]
[NOI2006] 最大获利 ★★★☆ 输入文件:profit.in 输出文件:profit.out 简单对比时间限制:2 s 内存限制:512 MB [问题描述] 新的技术正冲击着手 ...
- LuoguP2762 太空飞行计划问题(最大权闭合子图,最小割)
题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的 ...
- Petya and Graph/最大权闭合子图、最小割
原题地址:https://codeforces.com/contest/1082/problem/G G. Petya and Graph time limit per test 2 seconds ...
- BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...
- BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)
题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...
- bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】
不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...
随机推荐
- lintcode-129-重哈希
129-重哈希 哈希表容量的大小在一开始是不确定的.如果哈希表存储的元素太多(如超过容量的十分之一),我们应该将哈希表容量扩大一倍,并将所有的哈希值重新安排.假设你有如下一哈希表: size=3, c ...
- 0302借软件工程触IT
没有不想学好的学生,也没有选择计算机软件专业后不想过能进军IT的行业的.就对于自己情况来说,大学选择计算机商业软件专业学习也有一年多时间了,未接触专业知识前IT是一个高大上的向往,在初学C语 ...
- 【Nginx】优化配置
nginx优化 突破十万并发 一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1. worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它 ...
- php PDO操作类
<?php /*//pdo连接信息 $pdo=array("mysql:host=localhost;dbname=demo;charset=utf8","root ...
- HDU4701_Game
很有意思,很好的一个题目. 题目的意思是两个人初始状态分别有A和B元,现在有N件可买的商品.两人轮流买,商品必须从左到右买过去,一次可以买若干个.第一个无法买到商品的人输. 一看就知道是博弈题目,但是 ...
- 【转】小心stringstream.str()字符串用法的陷阱
--------------------- 作者:心中那自由的世界 来源:CSDN 原文:https://blog.csdn.net/119365374/article/details/7744678 ...
- IOS8模糊毛玻璃的效果UIVisualEffectView
UIVisualEffectView实现两种模糊效果:UIBlurEffect 和 UIVibrancyEffect 两者都是继承自UIView,前者放在任意的View里边都能对下册的视图渲染出模糊效 ...
- 常州day1p5
给一个 n∗m 的矩阵,矩阵的每个格子上有一个不超过 30 的非负整数. 我们定义一条合法的路线是从(1,1)开始只能向右和向下移动到达(n,m)的路线. 定义数列 A1,A2,A3,..,An+m− ...
- 【BZOJ4568】幸运数字(线性基,树链剖分,ST表)
[BZOJ4568]幸运数字(线性基,树链剖分,ST表) 题面 BZOJ Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市 ...
- 深入详解windows安全认证机制ntlm&Kerberos
0x01 为什么要理解windows 安全认证机制: 加深对后续各种漏洞利用的理解深度,还是那句话,要知其然,更要知其所以然,不废话,咱们直接开始 0x02 windows认证协议主要有以下两种: 基 ...