【BZOJ5016】[Snoi2017]一个简单的询问 莫队
【BZOJ5016】[Snoi2017]一个简单的询问
Description

Input
Output
Sample Input
1 1 1 1 1
2
1 2 3 4
1 1 4 4
Sample Output
1
题解:先将询问的l--,然后我们开始推式子喽!为了方便起见,下面用s(i)表示get(1,i,x)。那么:
$ans=\sum\limits_{x}(s(r1)-s(l1))*(s(r2)-s(l2)))\\=\sum\limits_{x}s(r1)*s(r2)+s(l1)*s(l2)-s(l1)*s(r2)-s(r1)*s(l2)\\*ab={(a+b)^2-a^2-b^2\over 2}*\\=\sum\limits_{x}{(s(r1)^2+s(r2)^2-(s(r2)-s(r1)))^2+s(l1)^2+s(l2)^2-(s(l2)-s(l1))^2+(s(r2)-s(l1))^2-s(r2)^2-s(l1)^2+(s(r1)-s(l2))^2-s(r1)^2-s(l2)^2\over 2}\\=\sum\limits_{x}{(s(r1)-s(l2))^2+(s(r2)-s(l1))^2-(s(l2)-s(l1))^2-(s(r2)-s(r1))^2\over 2}$
然后用莫队处理区间中每个数出现次数的平方即可!
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=50010;
struct node
{
int a,b,org,k;
node() {}
node(int x,int y,int c,int d){a=min(x,y)+1,b=max(x,y),org=c,k=d;}
}q[maxn<<2];
int s[maxn],v[maxn];
int n,m,B;
ll sum,ans[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
bool cmp(node a,node b)
{
return (a.a/B==b.a/B)?(a.b<b.b):(a.a/B<b.a/B);
}
int main()
{
n=rd(),B=int(sqrt(double(n)));
int i,a,b,c,d,l,r;
for(i=1;i<=n;i++) v[i]=rd();
m=rd();
for(i=1;i<=m;i++) a=rd()-1,b=rd(),c=rd()-1,d=rd(),
q[i]=node(a,c,i,-1),q[i+m]=node(b,d,i,-1),q[i+2*m]=node(a,d,i,1),q[i+3*m]=node(b,c,i,1);
sort(q+1,q+4*m+1,cmp);
for(l=1,r=0,i=1;i<=4*m;i++)
{
while(l>q[i].a) l--,s[v[l]]++,sum+=2*s[v[l]]-1;
while(l<q[i].a) sum-=2*s[v[l]]-1,s[v[l]]--,l++;
while(r<q[i].b) r++,s[v[r]]++,sum+=2*s[v[r]]-1;
while(r>q[i].b) sum-=2*s[v[r]]-1,s[v[r]]--,r--;
ans[q[i].org]+=q[i].k*sum;
}
for(i=1;i<=m;i++) printf("%lld\n",ans[i]>>1);
return 0;
}
【BZOJ5016】[Snoi2017]一个简单的询问 莫队的更多相关文章
- Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥
传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ...
- BZOJ5016:[SNOI2017]一个简单的询问(莫队)
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...
- 【bzoj5016】[Snoi2017]一个简单的询问 莫队算法
题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ...
- bzoj5016 & loj2254 [Snoi2017]一个简单的询问 莫队
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ...
- BZOJ5016 Snoi2017一个简单的询问(莫队)
容易想到区间转化成前缀和.这样每个询问有了二维坐标,莫队即可. #include<iostream> #include<cstdio> #include<cmath> ...
- [bzoj5016][Snoi2017]一个简单的询问
来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中 ...
- [SNOI2017]一个简单的询问
[SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ...
- [SNOI2017]一个简单的询问【莫队+容斥原理】
题目大意 给你一个数列,让你求两个区间内各个数出现次数的乘积的和. 分析 数据范围告诉我们可以用莫队过. 我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来. \[\sum ...
- bzoj 5016: [Snoi2017]一个简单的询问
Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ...
随机推荐
- C# 窗体位置 Show和ShowDialog (转载)
CenterParent 窗体在其父窗体中居中. CenterScreen 窗体在当前显示窗口中居中,其尺寸在 ...
- 【Hadoop】MR 切片机制 & MR全流程
1.概念 2.Split机制 3.MR Shuffle过程 4.MR中REDUCE与MAP写作过程 5.MR全貌
- 2017.10.13 unable to open debugger port(127.0.0.1:10308)
参考来自:http://blog.csdn.net/qq_34360219/article/details/76169653 1.场景 突然间IDEA就跑不起项目了,报了如下的错误:unable to ...
- iOS_block代码块
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcHJlX2VtaW5lbnQ=/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- Angular 学习笔记——factory
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...
- JAVA_Exception starting filter struts2怎么办
1 请确保你的项目里面有这两个文件,没有则导入 2 如果还不行,并且你设置了Struts的开发模式,并且你的Tomcat的路径有空格,大部分情况是Program File的原因,此时你需要重新安装 ...
- Sql Server 表分区(转)
什么是表分区 一般情况下,我们建立数据库表时,表数据都存放在一个文件里. 但是如果是分区表的话,表数据就会按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在 ...
- ddmrp
DDMRP 特点 在供应链加入 mts 缓冲,解耦 lead time, 缩小 bullwhip 效应,最小化库存 buffer动态调整 buffer 分3个颜色共 4个区域[zone],为 gree ...
- linux配置jdk失败
在linux下配置jdk时,/etc/profile下的配置内容是对的,可是输入java -version却发现配置没有成功,这一般都是jdk的安装文件夹权限没有提升的原因,仅仅需用chmod -R ...
- Spring使用经验之StandardServletMultipartResolver实现文件上传的基本配置
Note:Spring使用版本是4.1.6.RELEASE 1. 在实现了AbstractAnnotationConfigDispatcherServletInitializer的类中重载custom ...