++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个二叉树,节点的值仅限于从0-9,每一个从根节点达到叶子节点的路径代表一个数字。

一个例子,如果根节点到叶子节点的路径是 1->2->3,那么代表这个数字是123。

寻找所有路径代表的数字的和。

例如:

    1
/ \
2 3

从根节点到叶子节点的路径是 1->2 代表的数字是 12.
从根节点到叶子节点的路径是 1->3 代表的数字是  13.

返回和为 sum = 12 + 13 = 25.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

For example,

    1
/ \
2 3

The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.

Return the sum = 12 + 13 = 25.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 * int val;
 * TreeNode *left;
 * TreeNode *right;
 * TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
int sumNumbers(TreeNode *root, int last)
{
    /*没进入一层都要把last乘以10*/
    if(root->left == NULL && root->right == NULL)
    {
        return last * 10 + root->val;
    }
    else if(root->left == NULL)
    {
        return sumNumbers(root->right, last * 10 + root->val);
    }
    else if(root->right == NULL)
    {
        return sumNumbers(root->left, last * 10 + root->val);
    }
    else
    {
        return sumNumbers(root->left, last * 10 + root->val) + sumNumbers(root->right, last * 10 + root->val);
    }
}
int sumNumbers(TreeNode *root)
{
    /*空树*/
    if(root == NULL)
    {
        return 0;
    }
    else
    {
        return sumNumbers(root, 0);
    }
}

// 树中结点含有分叉,
//                  8
//              /       \
//             6         1
//           /   \
//          9     2
//               / \
//              4   7
int main()
{
    TreeNode *pNodeA1 = CreateBinaryTreeNode(8);
    TreeNode *pNodeA2 = CreateBinaryTreeNode(6);
    TreeNode *pNodeA3 = CreateBinaryTreeNode(1);
    TreeNode *pNodeA4 = CreateBinaryTreeNode(9);
    TreeNode *pNodeA5 = CreateBinaryTreeNode(2);
    TreeNode *pNodeA6 = CreateBinaryTreeNode(4);
    TreeNode *pNodeA7 = CreateBinaryTreeNode(7);

ConnectTreeNodes(pNodeA1, pNodeA2, pNodeA3);
    ConnectTreeNodes(pNodeA2, pNodeA4, pNodeA5);
    ConnectTreeNodes(pNodeA5, pNodeA6, pNodeA7);

PrintTree(pNodeA1);

//81 + 8627 + 8624 + 869 = 18201
    cout << sumNumbers(pNodeA1) << endl;

DestroyTree(pNodeA1);
    return 0;
}

结果输出:
18201
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}


 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

【二叉树的递归】07路径组成数字的和【Sum Root to Leaf Numbers】的更多相关文章

  1. Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    Leetcode之深度优先搜索(DFS)专题-129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers) 深度优先搜索的解题详细介绍,点击 给定一个二叉树,它的每个结点都存放 ...

  2. LeetCode 129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    题目描述 给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字. 例如,从根到叶子节点路径 1->2->3 代表数字 123. 计算从根到叶子节点 ...

  3. [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  4. [Swift]LeetCode129. 求根到叶子节点数字之和 | Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  5. [Leetcode] Sum root to leaf numbers求根到叶节点的数字之和

    Given a binary tree containing digits from0-9only, each root-to-leaf path could represent a number. ...

  6. [LeetCode] Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  7. 129. Sum Root to Leaf Numbers pathsum路径求和

    [抄题]: Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a ...

  8. LeetCode OJ:Sum Root to Leaf Numbers(根到叶节点数字之和)

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  9. [LeetCode]129. Sum Root to Leaf Numbers路径数字求和

    DFS的标准形式 用一个String记录路径,最后判断到叶子时加到结果上. int res = 0; public int sumNumbers(TreeNode root) { if (root== ...

随机推荐

  1. Windows下安装redis和在php中使用phpredis扩展

    详细博客地址:https://my.oschina.net/junn/blog/281058

  2. python的协程和_IO操作

    协程Coroutine: 协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行. 注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点 ...

  3. POJ 2092 Grandpa is Famous【水---找出现第二多的数】

    链接: http://poj.org/problem?id=2092 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=27454#probl ...

  4. php生成条形码: barcodegen

    实例结构: 1. index.html <!DOCTYPE html> <html> <head> <title>Test with embedded ...

  5. centos出现-bash: /usr/bin/php: 没有那个文件或目录解决方法

    造成这个的原因是因为找不到php的执行文件导致的,原先我是安装的php5.4,然后卸载了重新安装php7,导致php可执行文件没有放到$PATH中,可以在终端测试:php -v,如果报错bash: / ...

  6. Python锁

    # coding:utf-8 import threading import time def test_xc(): f = open("test.txt","a&quo ...

  7. JVM类加载器

    系统中的类加载器 1.BootStrap ClassLoader a.启动ClassLoader b.加载rt.jar 2.Extension ClassLoader a.扩展ClassLoader ...

  8. 12.Django数据库操作(执行原生SQL)

    1.使用extra方法 解释:结果集修改器,一种提供额外查询参数的机制 说明:依赖model模型 用在where后: Book.objects.filter(publisher_id="1& ...

  9. activiti--4----------------------------------流程变量

    一.流程变量的作用 1.用来传递业务参数 2.指定连线完成任务(同意或拒绝) 3.动态指定任务办理人 二.测试代码块 Person类 package com.xingshang.processVari ...

  10. cloudera impala编译 安装 配置 启动

    无论是采用GDB调试impala或者尝试修改impala源码,前提都是需要本地环境编译impala,这篇文章详细的分享一下impala编译方法以及编译过程遇到的棘手的问题: 前言: impala官方的 ...