题目描述

LYK最近在研究逆序对。 这个问题是这样的。 一开始LYK有一个2^n长度的数组ai。 LYK有Q次操作,每次操作都有一个参数k。表示每连续2^k长度作为一个小组。假设 n=4,k=2,则a[1],a[2],a[3],a[4]为一个小组,a[5],a[6],a[7],a[8]为一个小组, a[9],a[10],a[11],a[12]为一个小组,a[13],a[14],a[15],a[16]也为一个小组。 然后LYK对于每个小组都翻转,也就是说原数组会变成 a[4],a[3],a[2],a[1],a[8],a[7],a[6],a[5],a[12],a[11],a[10],a[9],a[16],a[15],a[14],a[13 ]。之后它想求出这2^n个数的逆序对是多少。 因此你需要输出对于每次操作,操作完后这2^n个数的逆序对有多少对。两个数ai,aj被称为逆序对当且仅当iaj。

数据范围

n<=17,Q<=200000,1<=ai<=2^n。

题解:        

         ①尝试将操作转化为可以记录翻转状态的形式

         ②找规律:

     对f[1]+f[2]+f[3]+f[4]+f[5]+f[6]+f[7]+f[8]进行2^3操作

                             f[1]+f[2]+f[3]+f[4]+f[5]+f[6]+f[7]+f[8] 

                           =f[2]+f[1]+f[4]+f[3]+f[6]+f[5]+f[8]+f[7] 

                           =f[4]+f[3]+f[2]+f[1]+f[8]+f[7]+f[6]+f[5] 

                           =f[8]+f[7]+f[6]+f[5]+f[4]+f[3]+f[2]+f[1]

           ③然后每次2k操作转化为按照上述方式(认真观察上述方式)交换长度为21,22…2k子区间

           ④使用down[i]表示按照上述规律的翻转的长度为2i单位区间每一对之间的逆序对数之和。

             ⑤使用up[i]表示按照上述规律的翻转的长度为2i单位区间每一对之间的顺序对数之和。

           ⑥使用f[i]表示当前区间是否被反转。

           ⑦每次询问处理:O(logn),小于k的区间就根据f[i]加,大于k的直接加

           ⑧初始化使用归并排序求出原先的总逆序对数同时初始化down,up,f

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <map>
#include <vector>
using namespace std;
const int N=(1<<17)+5;
long long st[N][20],ST[N][20];
int p[N],i,sum,o,a[N],b[N],n,T,PP,now,j,A,RR[N];
void gb(int l,int r)
{
if (l==r) return;
int mid=(l+r)/2;
gb(l,mid); gb(mid+1,r);
int i=l,j=mid+1,o=l;
for (i=l; i<=r; i++) b[i]=a[i];
for (i=r; i>=mid; i--) {RR[i]=i; if (i!=r && b[i+1]==b[i]) RR[i]=RR[i+1];}
i=l; j=mid+1;
while (i<=mid && j<=r)
{
if (b[i]<=b[j]) {a[o++]=b[i];if (b[i]==b[j]) ST[l][p[r-l+1]]+=RR[j]-j+1; i++;} else
{
a[o++]=b[j]; st[l][p[r-l+1]]+=mid-i+1; j++;
}
}
if (i<=mid) for (j=i; j<=mid; j++) a[o++]=b[j]; else
if (j<=r) for (i=j; i<=r; i++) a[o++]=b[i];
}
long long t[105],TT[105];
int main()
{
freopen("pair.in","r",stdin);
freopen("pair.out","w",stdout);
scanf("%d",&n);
sum=(1<<n);
for (i=1; i<=sum; i++) scanf("%d",&a[i]);
for (i=1; i<=17; i++) p[1<<i]=i;
gb(1,sum);
scanf("%d",&T);
for (i=1; i<=n; i++)
for (j=1; j<=(1<<n); j+=(1<<i))
{
t[i]+=st[j][i];
TT[i]+=ST[j][i];
}
long long ans=0;
while (T--)
{
int Q;
scanf("%d",&Q);
for (i=1; i<=Q; i++) t[i]=1ll*(1<<i-1)*(1<<i-1)*(1<<n-i)-TT[i]-t[i];
for (i=1; i<=n; i++) ans+=t[i];
printf("%I64d\n",ans); ans=0;
}
return 0;
}//czy020202

 

No need to doubt all my lost to faded glory,

My soul is small but longs to roam.——————汪峰《Song Of Redemption》

【CZY选讲·逆序对】的更多相关文章

  1. 【CZY选讲·Hja的棋盘】

    题目描述 Hja特别有钱,他买了一个×的棋盘,然后Yjq到这个棋盘来搞事.一开始所有格子都是白的,Yjq进行次行操作次列操作,所谓一次操作,是将对应的行列上的所有格子颜色取反.现在Yjq希望搞事之后 ...

  2. 【CZY选讲·吃东西】

    题目描述 一个神秘的村庄里有4家美食店.这四家店分别有A,B,C,D种不同的美食.LYK想在每一家店都吃其中一种美食.每种美食需要吃的时间可能是不一样的.现在给定第1家店A种不同的美食所需要吃的时间 ...

  3. 【CZY选讲·一道图论神题】

    题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删掉,但删这个点是需要代价的 ...

  4. 【CZY选讲·最大子矩阵和】

    题目描述 有一个n*m的矩阵,恰好改变其中一个数变成给定的常数P,使得改变后的这个矩阵的最大子矩阵最大. 数据范围 n,m<=300. 题解:    ①如果没有p,那么二维矩阵和就是一维最长 ...

  5. 【CZY选讲·Yjq的棺材】

    题目描述 Yjq想要将一个长为宽为的矩形棺材(棺材表面绝对光滑,所以棺材可以任意的滑动)拖过一个L型墓道. 如图所示,L型墓道两个走廊的宽度分别是和,呈90°,并且走廊的长度远大于. 现在Hja ...

  6. 【CZY选讲·Triangle】

    题目描述 长度为的铁丝,你可以将其分成若干段,并把每段都折成一个三角形.你还需要保证三角形的边长都是正整数并且三角形两两相似,问有多少种不同的分法. 数据范围 1≤≤10^6 题解:      ①相 ...

  7. 【CZY选讲·棋盘迷宫】

    题目描述 一个N*M的棋盘,’.’表示可以通过,’#’表示不能通过,给出Q个询问,给定起点和终点,判断两点是否联通,如联通输出“Yes”,否则输出“No”. 数据范围 N,M <=500,Q ...

  8. 【CZY选讲·扩展LCS】

    题目描述 给出两个仅有小写字母组成的字符串str1 和str2,试求出两个串的最长公共子序列. 数据范围 |str1| ⩽ 1000; |str2| ⩽ 10^6 题解:    ①直接进行LCS( ...

  9. 【CZY选讲·次大公因数】

    题目描述 给定n个数ai,求sgcd(a1,a1),sgcd(a1,a2),…,sgcd(a1,an). 其中sgcd(x,y)表示x和y的次大公因数.若不存在次大公因数,sgcd(x,y)=-1 ...

随机推荐

  1. cncert阅读报告

    信息安全阅读报告 Problem 1: 国家计算机网络应急技术处理协调中心(简称“国家互联网应急中心”,英文缩写为“CNCERT”或“CNCERT/CC”)作为我国非政府层面网络安全应急体系核心技术协 ...

  2. 一个优秀的SSH远程终端工具

    SSH远程终端工具是一款在Windows界面下用来访问远端不同系统下的服务器,从而比较好的达到远程控制终端的目的.向我们操控集群的时候,如果每台机器都安装一个显示器和键盘也是一个不小的花费,而远程终端 ...

  3. C6748的GPIO口配置使用

    2018年1月17日更新: 这几天用了创龙的C6748的库,对于GPIO配置十分不爽,我移植了RK6748的库,用起来十分酸爽,把下面的文件加入到工程中,然后include头文件后就可以使用.非常好使 ...

  4. C++ 基础 引用

    1.引用的本质 int b = 10; int &a = b; 等效于: int * const a = &b; 由于 a 是 const声明,所以一旦定义无法修改,所以要在定义时就要 ...

  5. poj 1957 二分搜索

    题意:N个灯泡离地H_i,满足H1 = A ,Hi = (Hi-1 + Hi+1)/2 – 1,HN = B ,求最小B. 思路: 只要二分第二个灯泡的高度就可以推出全部灯泡的高度 如果hi<0 ...

  6. javaScript编辑器sublime的安装

    最近在学习js,学习任何一门语言之前,当然免不了最初的环境安装: 见:http://www.cnblogs.com/zhcncn/p/4113589.html

  7. Android面试收集录 Android入门

    1.Android的特点有哪些? 编程语言是Java或Kotlin,Android中的Java字节码是允许在Dalvik虚拟机上的 支持4大组件 Android内置了WebKit核心的浏览器,支持H5 ...

  8. 20145202 《信息安全系统设计基础》git安装

    git的安装 直接输入指令将其安装就可以了. 安装的时候要设置公钥,我不知道以前在windows上设置过的公钥是否还能用所以我就还是从新搞了一个. 验证可以连通 遇到的问题

  9. CSS继承特殊

    继承 CSS的某些样式具有继承性.继承是一种规则,它允许样式不仅作用于某个特定html标签元素,而且应用于其后代   如:在p中的所有字体都为红色     p{color:red;}    <p ...

  10. mybatis异常:There is no getter for property named 'xxx' in 'xxx'

    在使用mybatis查询的时候出现了下面的异常: org.apache.ibatis.reflection.ReflectionException: There is no getter for pr ...