poj3728之离线LCA+dp思想/RMQ+LCA(非常好的题目)
题意很简单
给一个树(n < 5w) 每个点有个权值,代表商品价格
若干个询问(5w)
对每个询问,问的是从u点走到v点(简单路径),商人在这个路径中的某点买入商品,然后在某点再卖出商品, 最大可能是多少
注意一条路径上只能买卖一次,先买才能卖
- *分析:先求出点u,v的最近公共祖先f,然后求u->f->v的利润最大值maxval
- 对于这个maxval可能有三种情况:
- 1:maxval是u->f的maxval
- 2:maxval是f->v的maxval
- 3:maxval是u->f的最小w[i]减去f->v的最大w[i]
- 分析到这很明显需要设置4个变量来求maxval:
- up[u]表示u->f的最大maxval
- down[u]表示f->u的最大maxval
- maxw[u]表示u-f的最大w[i]
- minw[u]表示u-f的最小w[i]
- 所以maxval=max(max(up[u],down[v]),maxw[v]-minw[u]);
- 现在问题就是如何快速的求出这四个变量,在这里我们可以对u,v的LCA(u,v)进行分类解决
- 对于LCA(u,v)是f的询问全部求出,然后再求LCA(u,v)是f的父亲的询问
- 这样当我们求LCA(u,v)是f的父亲的询问的时候就可以借用已经求出的LCA(u,v)是f的询问
- 的结果,这样就不用反复去求u->f的那四个变量值,u->father[f]也能快速求出
- 这个变化主要在寻找father[v]这个过程中进行,具体看代码
/*分析:先求出点u,v的最近公共祖先f,然后求u->f->v的利润最大值maxval
对于这个maxval可能有三种情况:
1:maxval是u->f的maxval
2:maxval是f->v的maxval
3:maxval是u->f的最小w[i]减去f->v的最大w[i]
分析到这很明显需要设置4个变量来求maxval:
up[u]表示u->f的最大maxval
down[u]表示f->u的最大maxval
maxw[u]表示u-f的最大w[i]
minw[u]表示u-f的最小w[i]
所以maxval=max(max(up[u],down[v]),maxw[v]-minw[u]);
现在问题就是如何快速的求出这四个变量,在这里我们可以对u,v的LCA(u,v)进行分类解决
对于LCA(u,v)是f的询问全部求出,然后再求LCA(u,v)是f的父亲的询问
这样当我们求LCA(u,v)是f的父亲的询问的时候就可以借用已经求出的LCA(u,v)是f的询问
的结果,这样就不用反复去求u->f的那四个变量值,u->father[f]也能快速求出
这个变化主要在寻找father[v]这个过程中进行,具体看代码
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=+;
int n,m,size;
int uu[MAX],vv[MAX],ww[MAX],sum[MAX];
int up[MAX],down[MAX],maxw[MAX],minw[MAX],father[MAX];
int head[MAX],head2[MAX],head3[MAX];
bool mark[MAX]; struct Edge{
int v,id,next;
Edge(){}
Edge(int V,int ID,int NEXT):v(V),id(ID),next(NEXT){}
}edge[MAX*],edge2[MAX*],edge3[MAX*]; void Init(int num){
for(int i=;i<=num;++i)head[i]=head2[i]=head3[i]=-,mark[i]=false;
size=;
}
void InsertEdge(int u,int v,int id){
edge[size]=Edge(v,id,head[u]);
head[u]=size++;
}
void InsertEdge2(int u,int v,int id){
edge2[size]=Edge(v,id,head2[u]);
head2[u]=size++;
}
void InsertEdge3(int u,int v,int id){
edge3[size]=Edge(v,id,head3[u]);
head3[u]=size++;
}
int findset(int v){
if(v == father[v])return father[v];
int fa=father[v];
father[v]=findset(father[v]);
up[v]=max(max(up[v],up[fa]),maxw[fa]-minw[v]);
down[v]=max(max(down[v],down[fa]),maxw[v]-minw[fa]);
maxw[v]=max(maxw[v],maxw[fa]);
minw[v]=min(minw[v],minw[fa]);
return father[v];
}
void LCA(int u){
mark[u]=true;
father[u]=u;
for(int i=head2[u];i != -;i=edge2[i].next){//对LCA(u,v)进行分类
int v=edge2[i].v,id=edge2[i].id;
if(!mark[v])continue;
int f=findset(v);
InsertEdge3(f,v,id);
}
for(int i=head[u];i != -;i=edge[i].next){
int v=edge[i].v;
if(mark[v])continue;
LCA(v);
father[v]=u;
}
for(int i=head3[u];i != -;i=edge3[i].next){
int id=edge3[i].id;
findset(uu[id]);
findset(vv[id]);
sum[id]=max(max(up[uu[id]],down[vv[id]]),maxw[vv[id]]-minw[uu[id]]);
}
}
int main(){
int u,v;
while(~scanf("%d",&n)){
Init(n);
for(int i=;i<=n;++i){
scanf("%d",ww+i);
up[i]=down[i]=;
maxw[i]=minw[i]=ww[i];
}
for(int i=;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v,i);
InsertEdge(v,u,i);
}
size=;
scanf("%d",&m);
for(int i=;i<m;++i){
scanf("%d%d",&uu[i],&vv[i]);
InsertEdge2(uu[i],vv[i],i);
InsertEdge2(vv[i],uu[i],i);
}
size=;
LCA();
for(int i=;i<m;++i)printf("%d\n",sum[i]);
}
return ;
}
RMQ做法
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=+;
int n,m,size,top;
int uu[MAX],vv[MAX],ww[MAX],anc[MAX];
int up[MAX][],down[MAX][],maxw[MAX][],minw[MAX][],deep[MAX];
int head[MAX],head2[MAX],bin[MAX],stack[MAX],mp[MAX][],father[MAX];
bool mark[MAX]; struct Edge{
int v,id,next;
Edge(){}
Edge(int V,int ID,int NEXT):v(V),id(ID),next(NEXT){}
}edge[MAX*],edge2[MAX*]; void Init(int num){
for(int i=;i<=num;++i)head[i]=head2[i]=-,mark[i]=false;
size=top=;
}
void InsertEdge(int u,int v,int id){
edge[size]=Edge(v,id,head[u]);
head[u]=size++;
}
void InsertEdge2(int u,int v,int id){
edge2[size]=Edge(v,id,head2[u]);
head2[u]=size++;
}
void dfs(int u,int father,int k){
deep[u]=k;
for(int i=head[u];i != -;i=edge[i].next){
int v=edge[i].v;
if(v == father)continue;
dfs(v,u,k+);
}
}
void RMQ(int u,int father){
stack[++top]=u;
int fa=stack[top-];
up[u][]=down[u][]=;
maxw[u][]=minw[u][]=ww[u];
for(int i=;bin[i]<=top;++i){//2^i<=top
fa=stack[top-bin[i-]];
up[u][i]=max(max(up[u][i-],up[fa][i-]),maxw[fa][i-]-minw[u][i-]);
down[u][i]=max(max(down[u][i-],down[fa][i-]),maxw[u][i-]-minw[fa][i-]);
maxw[u][i]=max(maxw[u][i-],maxw[fa][i-]);
minw[u][i]=min(minw[u][i-],minw[fa][i-]);
mp[u][i]=stack[top-bin[i]];
}
for(int i=head[u];i != -;i=edge[i].next){
int v=edge[i].v;
if(v == father)continue;
RMQ(v,u);
}
--top;
}
int findset(int v){
if(v != father[v])father[v]=findset(father[v]);
return father[v];
}
void LCA(int u){
mark[u]=true;
father[u]=u;
for(int i=head2[u];i != -;i=edge2[i].next){
int v=edge2[i].v,id=edge2[i].id;
if(!mark[v])continue;
anc[id]=findset(v);
}
for(int i=head[u];i != -;i=edge[i].next){
int v=edge[i].v;
if(mark[v])continue;
LCA(v);
father[v]=u;
}
}
int search(int x){
int i=;
while(bin[i+]<=x)++i;
return i;
}
int Minw(int u,int anc){
int i=search(deep[u]-deep[anc]+);
if(bin[i] == deep[u]-deep[anc]+)return minw[u][i];
return min(minw[u][i],Minw(mp[u][i],anc));
}
int Maxw(int u,int anc){
int i=search(deep[u]-deep[anc]+);
if(bin[i] == deep[u]-deep[anc]+)return maxw[u][i];
return max(maxw[u][i],Maxw(mp[u][i],anc));
}
int Down(int u,int anc){
int i=search(deep[u]-deep[anc]+);
if(bin[i] == deep[u]-deep[anc]+)return down[u][i];
int downfa=Down(mp[u][i],anc);
downfa=max(downfa,down[u][i]);
int minwfa=Minw(mp[u][i],anc);
return max(downfa,maxw[u][i]-minwfa);
}
int UP(int u,int anc){
int i=search(deep[u]-deep[anc]+);
if(bin[i] == deep[u]-deep[anc]+)return up[u][i];
int upfa=UP(mp[u][i],anc);
upfa=max(upfa,up[u][i]);
int maxwfa=Maxw(mp[u][i],anc);
return max(upfa,maxwfa-minw[u][i]);
}
int main(){
bin[]=;
for(int i=;bin[i-]<MAX;++i)bin[i]=bin[i-]*;
int u,v;
while(~scanf("%d",&n)){
Init(n);
for(int i=;i<=n;++i)scanf("%d",ww+i);
for(int i=;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v,i);
InsertEdge(v,u,i);
}
size=;
scanf("%d",&m);
for(int i=;i<m;++i){
scanf("%d%d",uu+i,vv+i);
InsertEdge2(uu[i],vv[i],i);
InsertEdge2(vv[i],uu[i],i);
}
dfs(,-,);
RMQ(,-);
LCA();
for(int i=;i<m;++i){
int upmax=UP(uu[i],anc[i]),downmax=Down(vv[i],anc[i]);
int Minww=Minw(uu[i],anc[i]),Maxww=Maxw(vv[i],anc[i]);
printf("%d\n",max(max(upmax,downmax),Maxww-Minww));
}
}
return ;
}
/*
7
300
11
11
21
10
31
222
1 2
2 3
3 4
4 5
2 6
1 7
1
5 6
*/
poj3728之离线LCA+dp思想/RMQ+LCA(非常好的题目)的更多相关文章
- 【算法】RMQ LCA 讲课杂记
4月4日,应学弟要求去了次学校给小同学们讲了一堂课,其实讲的挺内容挺杂的,但是目的是引出LCA算法. 现在整理一下当天讲课的主要内容: 开始并没有直接引出LCA问题,而是讲了RMQ(Range Min ...
- How far away ? HDU - 2586 【LCA】【RMQ】【java】
题目大意:求树上任意两点距离. 思路: dis[i]表示i到根的距离(手动选根),则u.v的距离=dis[u]+dis[v]-2*dis[lca(u,v)]. lca:u~v的dfs序列区间里,深度最 ...
- LCA转换成RMQ
LCA(Lowest Common Ancestor 最近公共祖先)定义如下:在一棵树中两个节点的LCA为这两个节点所有的公共祖先中深度最大的节点. 比如这棵树 结点5和6的LCA是2,12和7的LC ...
- poj 1330(RMQ&LCA入门题)
传送门:Problem 1330 https://www.cnblogs.com/violet-acmer/p/9686774.html 参考资料: http://dongxicheng.org/st ...
- POJ 3728 The merchant(LCA+DP)
The merchant Time Limit : 6000/3000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other) Total ...
- hdu5293 lca+dp+树状数组+时间戳
题意是给了 n 个点的树,会有m条链条 链接两个点,计算出他们没有公共点的最大价值, 公共点时这样计算的只要在他们 lca 这条链上有公共点的就说明他们相交 dp[i]为这个点包含的子树所能得到的最 ...
- HDU 6065 RXD, tree and sequence (LCA DP)
RXD, tree and sequence Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java ...
- 到底什么是dp思想(内含大量经典例题,附带详细解析)
期末了,通过写博客的方式复习一下dp,把自己理解的dp思想通过样例全部说出来 说说我所理解的dp思想 dp一般用于解决多阶段决策问题,即每个阶段都要做一个决策,全部的决策是一个决策序列,要你求一个 最 ...
- hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)
Increasing Speed Limits Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java ...
随机推荐
- JAVA基础知识总结13(同步)
好处:解决了线程安全问题. 弊端:相对降低性能,因为判断锁需要消耗资源,还容易产生了死锁. 定义同步是有前提的: 1,必须要有两个或者两个以上的线程,才需要同步. 2,多个线程必须保证使用的是同一个锁 ...
- ORACLE体系结构一 (物理结构)- 数据文件、日志文件、控制文件和参数文件
一.物理结构Oracle物理结构包含了数据文件.日志文件.控制文件和参数文件 1.数据文件每一个ORACLE数据库有一个或多个物理的数据文件(data file).一个数据库的数据文件包含全部数据库数 ...
- oracle --(二)分区(extent)
基本关系:数据库---表空间---数据段---分区---数据块 一.分区(extent)分区extent是比数据块大一级的存储结构,是几个逻辑上相邻的data block的组合.我们知道,物理存储通常 ...
- js中的操作符
写在前面 js语法 DOM对象(把body,div,p等节点树看成一个对象) BOM对象(把浏览器的地址栏历史记录DOM等装在一个对象) 浏览器是宿主,但js的宿主不限于浏览器,也可以是服务器,如no ...
- day17-jdbc 3.jdbc快速入门
通过java程序操作数据库. 对数据库操作是对记录的操作.记录就是DML和DCL. 只要Java程序跟任何设备进行了连接,用完之后必须释放资源.最简单基础班讲I/O流,Java跟文件进行了连接,用完之 ...
- day17 9.关闭资源与异常处理
Java程序跟任何外部设备进行连接之后,都要把连接断开,把资源释放掉.Connection是一个重量级资源,Connecton占内存,Connection的获取是比较消耗资源和内存的.finally是 ...
- SQL IN, NOT IN, EXISTS, NOT EXISTS
IN与EXISTS执行流程 IN:在查询的时候,首先查询子查询的表,然后将内表和外表做一个笛卡尔积,然后按照条件进行筛选.所以相对内表比较小的时候,in的速度较快.(IN时不对NULL进行处理) EX ...
- BuilderPattern(23种设计模式之一)
设计模式六大原则(1):单一职责原则 设计模式六大原则(2):里氏替换原则 设计模式六大原则(3):依赖倒置原则 设计模式六大原则(4):接口隔离原则 设计模式六大原则(5):迪米特法则 设计模式六大 ...
- widget自定义控件【android.view.InflateException: Binary XML file line #2: Error inflating class...】
此错误比较难定位,场景是这样的:在一个widget中使用了自定义控件,始终会报 android.view.InflateException: Binary XML file line #2: Erro ...
- appium自动化安装(一)
1.首先去 https://github.com/ 了解一下appium一些相关信息 2.安装node.js:node.js官方网站:https://nodejs.org/ 安装完成,打开Wind ...