题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:
复制

3 3
1 2 3
1 2
1 3
输出样例#1: 复制

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000。

倍增;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 1000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n, m;
int val[maxn][20];
int fa[maxn][20]; int main() {
//ios::sync_with_stdio(0);
rdint(n); rdint(m);
for (int i = 1; i <= n; i++) {
rdint(val[i][0]);
}
for (int i = 1; i < n; i++) {
int x, y; rdint(x); rdint(y);
fa[y][0] = x;
}
for (int i = 1; i <= 18; i++) {
for (int j = 1; j <= n; j++) {
fa[j][i] = fa[fa[j][i - 1]][i - 1];
val[j][i] = val[j][i - 1] + val[fa[j][i - 1]][i - 1];
}
}
int ans = 0;
for (int i = 1; i <= n; i++) {
int x = 0;
int y = i;
for (int j = 18; j >= 0; j--) {
if (x + val[y][j] <= m) {
x += val[y][j];
y = fa[y][j];
}
if (x == m) {
ans++; break;
}
}
}
cout << ans << endl;
return 0;
}

[JLOI2012]树 倍增优化的更多相关文章

  1. 洛谷P3248 树 [HNOI2016] 主席树+倍增+分治

    正解:主席树+倍增+分治 解题报告: 传送门! 首先看到这题会想到之前考过的这题 但是那题其实简单一些,,,因为那题只要用个分治+预处理就好,只是有点儿思维难度而已 这题就不一样,因为它说了是按照原树 ...

  2. Codeforces 983E - NN country(贪心+倍增优化)

    Codeforces 题面传送门 & 洛谷题面传送门 一道(绝对)偏简单的 D1E,但是我怕自己过若干年(大雾)忘了自己的解法了,所以过来水篇题解( 首先考虑怎么暴力地解决这个问题,不难发现我 ...

  3. BZOJ2783: [JLOI2012]树 dfs+set

    2783: [JLOI2012]树 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 588  Solved: 347 Description 数列 提交文 ...

  4. 2783: [JLOI2012]树( dfs + BST )

    直接DFS, 然后用set维护一下就好了.... O(nlogn) ------------------------------------------------------------------ ...

  5. POJ 1014 Dividing(多重背包, 倍增优化)

    Q: 倍增优化后, 还是有重复的元素, 怎么办 A: 假定重复的元素比较少, 不用考虑 Description Marsha and Bill own a collection of marbles. ...

  6. 【BZOJ】3572: [Hnoi2014]世界树 虚树+倍增

    [题意]给定n个点的树,m次询问,每次给定ki个特殊点,一个点会被最近的特殊点控制,询问每个特殊点控制多少点.n,m,Σki<=300000. [算法]虚树+倍增 [题解]★参考:thy_asd ...

  7. 【BZOJ2783】[JLOI2012]树 DFS+栈+队列

    [BZOJ2783][JLOI2012]树 Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节 ...

  8. 题解 P3252 【[JLOI2012]树】

    \(\Huge{[JLOI2012]树}\) 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点 ...

  9. 洛谷——P3252 [JLOI2012]树

    P3252 [JLOI2012]树 题目描述 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度 ...

随机推荐

  1. BEC listen and translation exercise 46

    录音文件 https://pan.baidu.com/s/1qYYZGWO The process of learning and exploring a subject can lead to a ...

  2. leetcode 205. Isomorphic Strings(哈希表)

    Given two strings s and t, determine if they are isomorphic. Two strings are isomorphic if the chara ...

  3. android sqlite,大数据处理、同时读写

    1. 批量写入,采用事物方式,先缓存数据,再批量写入数据,极大提高了速度 288条,直接inset  into  耗时7秒 8640条,     批量写入  耗时5-7秒 try { this.myD ...

  4. 利用Perlin nosie 完成(PS 滤镜—— 分成云彩)

    %%%% Cloud %%%% 利用perlin noise生成云彩 clc; clear all; close all; addpath('E:\PhotoShop Algortihm\Image ...

  5. php实现多文件上传和下载。

    http://1229363.blog.163.com/blog/static/19743427200751291055264/

  6. 多媒体的框架 - OpenCore框架概述

    OpenCore是一个多媒体的框架,从宏观上来看,它主要包含了两大方面的内容:PVPlayer:提供媒体播放器的功能,完成各种音频 (Audio).视频(Video)流的回放(Playback)功能. ...

  7. elasticsearch监控平台cerebro-0.8.3 相关操作

    上面这个平台是cerebro-0.8.3  在github上找就有了 #################### GET /hnscan_source_o_comm_drv_bad_bhv_occur/ ...

  8. poj 1845 Sumdiv(约数和,乘法逆元)

    题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...

  9. ACM学习历程—Hihocoder 1288 Font Size(暴力 || 二分)

    http://hihocoder.com/problemset/problem/1288 这题是这次微软笔试的第一题,关键的是s的上限是min(w, h),这样s的范围只有到1000,这样就可以直接暴 ...

  10. 上海-北京间通过Azure Storage的RA-GRS类型的存储账户进行快速复制

    Azure的Blob存储分成多种类型,目前主要有: 其中RA-GRS可以在上海-北京两个数据中心间同步数据.并且,在第二个数据中心可以只读的方式读取这个存储账户中的Blob内容. 虽然GRS采用的是准 ...