P3338 [ZJOI2014]力(FFT)
题目
P3338 [ZJOI2014]力
做法
普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\)
其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略那部分,其他的直接按下标存下来,反正最后的答案是不变的
好了步入正题吧,我们定义 $$F_j=\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)2}-\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)2}$$
求\(E_i=\dfrac{F_i}{q_i}\)
显然$$E_j=\sum\limits_{i<j}\dfrac{q_i}{(i-j)2}-\sum\limits_{i<j}\dfrac{q_i}{(i-j)2}$$
\]
令\(f_i=q_i,g_i=\dfrac{1}{i^2}\),特别地,\(g_0=0\),则有:$$E_j=\sum_{i=1}{j-1}f_ig_{i-j}-\sum_{i=j+1}{n}f_ig_{i-j}$$
左边部分很简单就能化成卷积形式:$$\sum_{i=1}{j-1}f_ig_{i-j}=\sum_{i=1}{j-1}f_ig_{j-i}=\sum_{i=1}^{j}f_ig_{j-i}$$
右边部分:$$\sum\limits_{i=j+1}{n}f_ig_{i-j}=\sum\limits_{i=1}{n-j}f_{i+j}g_{i}$$
令\(p_i=f_{n-i}\),则\(p_{n-i-j}=f_{i+j}\),则有:$$\sum\limits_{i=1}{n-j}f_{i+j}g_{i}=\sum_{i=1}{n-j} p_{n-i-j}g_i$$
都化成卷积形式了直接FFT
My complete code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const double Pi=acos(-1.0);
const int maxn=300000;
struct complex{
double x,y;
complex (double xx=0,double yy=0){
x=xx,y=yy;
}
}f[maxn],p[maxn],g[maxn];
int n,limit,L;
int r[maxn];
complex operator + (complex x,complex y){
return complex(x.x+y.x,x.y+y.y);
}
complex operator - (complex x,complex y){
return complex(x.x-y.x,x.y-y.y);
}
complex operator * (complex x,complex y){
return complex(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);
}
inline void FFT(complex *A,int type){
for(int i=0;i<limit;++i)
if(i<r[i])
swap(A[i],A[r[i]]);
for(int mid=1;mid<limit;mid<<=1){
complex WN(cos(Pi/mid),type*sin(Pi/mid));
for(int R=mid<<1,j=0;j<limit;j+=R){
complex w(1,0);
for(int k=0;k<mid;++k,w=w*WN){
complex x=A[j+k],y=w*A[j+mid+k];
A[j+k]=x+y,
A[j+mid+k]=x-y;
}
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%lf",&f[i].x),f[i].y=0,
g[i].x=(double)1.0/i/i;
p[n-i].x=f[i].x;
}
limit=1,L=0;
while(limit<n+n)
limit<<=1,
++L;
for(int i=0;i<limit;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
FFT(f,1),FFT(p,1),FFT(g,1);
for(int i=0;i<limit;++i)
f[i]=f[i]*g[i];
for(int i=0;i<limit;++i)
p[i]=p[i]*g[i];
FFT(f,-1),FFT(p,-1);
for(int i=1;i<=n;++i)
printf("%.3lf\n",f[i].x/limit-p[n-i].x/limit);
return 0;
}/*
*/
P3338 [ZJOI2014]力(FFT)的更多相关文章
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
随机推荐
- MQTT--Mosquitto的配置文件
Mosquitto的配置文件存放在/etc/mosquitto/mosquitto.conf 配置文件具体的配置内容为: # ===================================== ...
- linux安全组配置
万网的是这样子配置的:
- IE8 兼容 getElementsByClassName
IE8以下版本没有getElementsByClassName这个方法,以下是兼容写法 function ieGetElementsByClassName() { if (!document.getE ...
- RecyclerView 踩坑
一.RecyclerView设置拖动后怎么监听拖动的开始和结束 ItemTouchHelper helper = new ItemTouchHelper(new ItemTouchHelper.Cal ...
- Xampp 环境问题集合
1.不小心把虚拟机的环境删了,需要重新安装xmapp 安装很简单,但是重启:/opt/lampp/lampp restart 发现 XAMPP:"Another web server dae ...
- Android Material Design-Defining Shadows and Clipping Views(定义阴影和裁剪视图)-(四)
转载请注明出处:http://blog.csdn.net/bbld_/article/details/40539131 翻译自:http://developer.android.com/trainin ...
- mysql数据库的导出与导入
导出 在dos节目,切换到mysql依照文件夹的bin下.输入下面命令 mysqldump -u root -p nxu_life > nxu_life2.sql 运行完毕后.就能够看到在bin ...
- Brain Network (easy)(并查集水题)
G - Brain Network (easy) Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & ...
- EasyDSS视频点播服务器实现多分辨率/多码率无缝切换的办法
EasyDSS流媒体音视频直播与点播服务器软件,是一套提供一站式的转码.点播.直播.检索.回放.录像下载服务的高性能RTMP/HLS/HTTP-FLV流媒体服务,极大地简化了流媒体相关业务的开发和集成 ...
- 在jsp中嵌入javascript代码执行对html的影响方式
1 javascript的作用范围 javascript操作的是html dom树. 它可以用来直接写入html标签:修改html的内容:响应事件:修改html中的图像:修改html的样式等等. 2 ...