P3338 [ZJOI2014]力(FFT)
题目
P3338 [ZJOI2014]力
做法
普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\)
其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略那部分,其他的直接按下标存下来,反正最后的答案是不变的
好了步入正题吧,我们定义 $$F_j=\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)2}-\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)2}$$
求\(E_i=\dfrac{F_i}{q_i}\)
显然$$E_j=\sum\limits_{i<j}\dfrac{q_i}{(i-j)2}-\sum\limits_{i<j}\dfrac{q_i}{(i-j)2}$$
\]
令\(f_i=q_i,g_i=\dfrac{1}{i^2}\),特别地,\(g_0=0\),则有:$$E_j=\sum_{i=1}{j-1}f_ig_{i-j}-\sum_{i=j+1}{n}f_ig_{i-j}$$
左边部分很简单就能化成卷积形式:$$\sum_{i=1}{j-1}f_ig_{i-j}=\sum_{i=1}{j-1}f_ig_{j-i}=\sum_{i=1}^{j}f_ig_{j-i}$$
右边部分:$$\sum\limits_{i=j+1}{n}f_ig_{i-j}=\sum\limits_{i=1}{n-j}f_{i+j}g_{i}$$
令\(p_i=f_{n-i}\),则\(p_{n-i-j}=f_{i+j}\),则有:$$\sum\limits_{i=1}{n-j}f_{i+j}g_{i}=\sum_{i=1}{n-j} p_{n-i-j}g_i$$
都化成卷积形式了直接FFT
My complete code
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const double Pi=acos(-1.0);
const int maxn=300000;
struct complex{
double x,y;
complex (double xx=0,double yy=0){
x=xx,y=yy;
}
}f[maxn],p[maxn],g[maxn];
int n,limit,L;
int r[maxn];
complex operator + (complex x,complex y){
return complex(x.x+y.x,x.y+y.y);
}
complex operator - (complex x,complex y){
return complex(x.x-y.x,x.y-y.y);
}
complex operator * (complex x,complex y){
return complex(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);
}
inline void FFT(complex *A,int type){
for(int i=0;i<limit;++i)
if(i<r[i])
swap(A[i],A[r[i]]);
for(int mid=1;mid<limit;mid<<=1){
complex WN(cos(Pi/mid),type*sin(Pi/mid));
for(int R=mid<<1,j=0;j<limit;j+=R){
complex w(1,0);
for(int k=0;k<mid;++k,w=w*WN){
complex x=A[j+k],y=w*A[j+mid+k];
A[j+k]=x+y,
A[j+mid+k]=x-y;
}
}
}
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%lf",&f[i].x),f[i].y=0,
g[i].x=(double)1.0/i/i;
p[n-i].x=f[i].x;
}
limit=1,L=0;
while(limit<n+n)
limit<<=1,
++L;
for(int i=0;i<limit;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
FFT(f,1),FFT(p,1),FFT(g,1);
for(int i=0;i<limit;++i)
f[i]=f[i]*g[i];
for(int i=0;i<limit;++i)
p[i]=p[i]*g[i];
FFT(f,-1),FFT(p,-1);
for(int i=1;i<=n;++i)
printf("%.3lf\n",f[i].x/limit-p[n-i].x/limit);
return 0;
}/*
*/
P3338 [ZJOI2014]力(FFT)的更多相关文章
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
随机推荐
- DelphiXe 中静态数组TByteArray和动态数组TBytes /array of byte 的区别
在应用中发现静态数组和动态数组是有区别的: procedure TForm1.Button1Click(Sender: TObject);var RsltStream: TMemoryStream; ...
- hector_localization hector_salm rplidar同时编译
1.将hector_localization包clone到src文件夹 进行功能包依赖安装 cd test_ws rosdep update rosdep install --from-paths ...
- SpringSecurity学习二----------实现自定义登录界面
© 版权声明:本文为博主原创文章,转载请注明出处 1.项目结构 2.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0& ...
- hdu 4454 Stealing a Cake(计算几何:最短距离、枚举/三分)
题意:已知起点.圆.矩形,要求计算从起点开始,经过圆(和圆上任一点接触即可),到达矩形的路径的最短距离.(可以穿过园). 分析:没什么好的方法,凭感觉圆上的每个点对应最短距离,应该是一个凸函数,用三分 ...
- 在spring mvc中利用ajax批量删除数据
1.前台代码: $("#batchdelete").click(function(){ $.ajax({ type: "post", url: url, dat ...
- kill 命令
Linux中的kill命令用来终止指定的进程(terminate a process)的运行,是Linux下进程管理的常用命令.通常,终止一个前台进程可以使用Ctrl+C键,但是,对于一个后台进程就须 ...
- Android小应用之拨号器
首先看一下Android Studio下怎么设置应用的ICON Activity的onCreate()方法 当界面刚被创建时会回调此方法,super.onCreate()执行父类的初始化操作,必须要加 ...
- windows svchost.exe 引起的出现的莫名其妙的窗口失去焦点
我不知道你们遇到没,反正我是遇到了,现在我就把解决方法给你们,当然都是从网上整理下来的 这个失去焦点可以分为两种,一种是病毒,一种是系统自带的问题 首先你得知道自己的窗口被什么给挤掉了焦点 先看看这篇 ...
- HDOJ 4923 Room and Moor
用一个栈维护b的值,每次把一个数放到栈顶. 看栈首的值是不是大于这个数,假设大于的话将栈顶2个元素合并.b的值就是这两个栈顶元素的平均值. .. Room and Moor Time Limit: 1 ...
- 那不是Bug,是新需求
原文作者:Jeff Atwood 自从我干上软件开发这一行.而且使用了Bug跟踪系统.我们在每个项目里都会纠结一个主要的问题:你怎么能把Bug与功能需求区分开来? 当然,假设程序崩溃了,这毫无疑问是B ...