Greatest Common Increasing Subsequenc

Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
 
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
 
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
 
Sample Input
1
5
1 4 2 5 -12
4
-12 1 2 4
 
Sample Output
2
 
题意:求最长公共上升子序列。
做法:设f[i][j]表示以b[j]结尾的最长公共上升子序列长度。那么有f[i][j]=f[i-1][j],f[i][j]=max(f[i-1][k]){a[i]=b[j],a[i]>b[k]}
这样直接枚举需要三重,虽然对于本题似乎并不会超时(我不知道有几组数据。。)?但我们可以寻求更好的做法。
可以想到,在一重循环i中,a[i]>b[k]中的a[i]是固定的,也就是说,对于循环k,每次长度都只加1,实际上我们可以用一个 变量来维护当前
的j是否满足决策条件 val=max(val,f[i-1][j])(a[i]>b[j]),这样就直接降了一维复杂度。
PS:本题输出格式坑(每个输出间空两行)。
 #include <cstdio>
#include <iostream>
#define N 607
#include <cstring>
using namespace std;
int n,m,T,ans;
int f[N][N],a[N],b[N]; inline int max(int a,int b) {return a>b?a:b;} void Init(){
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for (int i=;i<=m;i++) scanf("%d",&b[i]);
} void Dp(){
memset(f,,sizeof(f));
for (int i=;i<=n;i++){
int val=;
if (b[]<a[i]) val=f[i-][];
for (int j=;j<=m;j++){
if (a[i]==b[j]) f[i][j]=val+;
else f[i][j]=f[i-][j];
if (a[i]>b[j]) val=max(val,f[i-][j]);
}
}
ans=;
for (int i=;i<=n;i++) ans=max(f[n][i],ans);
} int main(){
scanf("%d",&T);
for(;T--;){
Init();
Dp();
printf("%d\n",ans);
if (T) printf("\n");
}
}
 

HDU 1423 Greatest Common Increasing Subsequence(LCIS)的更多相关文章

  1. 1423 Greatest Common Increasing Subsequence (LCIS)

    讲解摘自百度; 最长公共上升子序列(LCIS)的O(n^2)算法? 预备知识:动态规划的基本思想,LCS,LIS.? 问题:字符串a,字符串b,求a和b的LCIS(最长公共上升子序列).? 首先我们可 ...

  2. HDUOJ ---1423 Greatest Common Increasing Subsequence(LCS)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  3. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

  4. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  5. HDU 1423 Greatest Common Increasing Subsequence(LICS入门,只要求出最长数)

    Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  6. HDU 1423 Greatest Common Increasing Subsequence

    最长公共上升子序列   LCIS 看这个博客  http://www.cnblogs.com/nuoyan2010/archive/2012/10/17/2728289.html #include&l ...

  7. HDU 1423 Greatest Common Increasing Subsequence ——动态规划

    好久以前的坑了. 最长公共上升子序列. 没什么好说的,自己太菜了 #include <map> #include <cmath> #include <queue> ...

  8. HDOJ 1423 Greatest Common Increasing Subsequence 【DP】【最长公共上升子序列】

    HDOJ 1423 Greatest Common Increasing Subsequence [DP][最长公共上升子序列] Time Limit: 2000/1000 MS (Java/Othe ...

  9. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

随机推荐

  1. .net 记录

    Stack Overflow 2016最新架构探秘 http://www.infoq.com/cn/news/2016/03/Stack-Overflow-architecture-insi#rd N ...

  2. mysql日常使用总结(持续更新中)

    记录一些日常的mysql常用的使用, 方便随用随查. 一.表结构 1.1 查看表结构 方式1: 可以查看建表语句,完整的表结构. show create table table_name; 方式2:可 ...

  3. enable orgmode latex preview to support retina on mac

    Table of Contents 1. enable orgmode latex preview to support retina on mac 1.1. get the proper versi ...

  4. servlet和jsp存值和取值的方式

    在servlet和jsp中存值和取值的方式由两种 1种是setAttribute和getAttribute 2种是c:forEach

  5. python中函数的定义与调用

    1.为什么要用函数? (1)代码重复太多(2)可读性差 使用函数的好处: (1)代码重用 (2)保持一致性,易维护 (2)可扩展性 2.初始函数定义与调用     函数的定义 def test(x): ...

  6. 十分钟玩转 jQuery、实例大全(参考自博主索宁)

    十分钟玩转 jQuery.实例大全(参考自博主索宁) 一.简介 书写规则 支持链式操作: 在变量前加"$"符号(var $variable = jQuery 对象): 注:此规定并 ...

  7. TED:如何掌控你的自由时间以及让自己变得更好,这样就能看到爱情应有的样子

    TED:如何掌控你的自由时间以及让自己变得更好,这样就能看到爱情应有的样子 一.<如何掌控你的自由时间> (1)时间管理的传统思维:守时和节省零散的时间.演讲者认为这个观点已经彻底落后. ...

  8. C# Dictionary的遍历

    foreach (KeyValuePair<string, string> kvp in dic) { Console.WriteLine("key:{0},value:{1}& ...

  9. Eucalyptus简介

    1.Eucalyptus是什么? Eucalyptus  n.桉树 Eucalyptus is a Linux-based software architecture that implements ...

  10. 关于Mybatis的pagehelper使用遇到的坑

    参考博客: https://blog.csdn.net/wzyxdwll/article/details/66473466 下面给出pagehelp使用的配置, 在springmvc中的配置: 下面是 ...