【bzoj1951】: [Sdoi2010]古代猪文

因为999911659是个素数

欧拉定理得

然后指数上中国剩余定理

然后分别lucas定理就好了

注意G==P的时候的特判

 /* http://www.cnblogs.com/karl07/ */
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long const ll P=;
const ll p1[] = {, , , , };
const ll N=;
ll g,n,cnt=;
ll fac[N+],ifac[N+];
ll p[N],ans[]; ll Q_pow(ll a,ll b,ll p){
ll ans=;
while (b){
if (b&) ans=ans*a%p;
a=a*a%p;
b=(b>>);
}
return ans;
} void FAC(ll p){
ifac[]=fac[]=;
for (int i=;i<=N;i++) fac[i]=fac[i-]*i%p,ifac[i]=Q_pow(fac[i],p-,p);
} ll C(ll n,ll m,ll p){
if (m>n) return ;
return fac[n]*ifac[m]%p*ifac[n-m]%p;
} ll lucas(ll n,ll m,ll p){
if (m==) return ;
return lucas(n/p,m/p,p)*C(n%p,m%p,p)%p;
} void fj(ll x){
for (int i=;i*i<=x;i++){
if (x%i==){
p[++cnt]=i;
if (i*i!=x) p[++cnt]=n/i;
}
}
} ll gcd(ll a,ll b){return b ? gcd(b,a%b) : a;} void ex_gcd(ll a,ll b,ll &x,ll &y){
if (b==){x=;y=;return;}
ex_gcd(b,a%b,y,x);
y-=x*(a/b);
} ll China(){
ll a0=ans[],p0=p1[];
for (int i=;i<=;i++){
ll x,y,g=gcd(p0,p1[i]);
ex_gcd(p0,p1[i],x,y);
x=(x*(ans[i]-a0)%p1[i]+p1[i])%p1[i];
a0=a0+x*p0;
p0=p0/g*p1[i];
}
return a0;
} void work(){
for(int i=;i<=;i++){
FAC(p1[i]);
for (int j=;j<=cnt;j++){
ans[i]=(ans[i]+lucas(n,n/p[j],p1[i]))%p1[i];
}
}
printf("%lld\n",Q_pow(g,China(),P));
} int main(){
scanf("%lld%lld",&n,&g);
if (g==P) {puts(""); return ;}
fj(n);
work();
return ;
}
  

各种zz的错误。。调了一年

而且跑的巨慢无比。。

【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理的更多相关文章

  1. BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】

    题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...

  2. bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】

    首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...

  3. bzoj1951 [Sdoi2010]古代猪文 ——数论综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢 ...

  4. 【BZOJ1951】古代猪文(CRT,卢卡斯定理)

    [BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...

  5. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  6. BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...

  7. BZOJ1951[SDOI2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  8. [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  9. BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

随机推荐

  1. Java创建AD(Active Directory)域控制器用户 (未测)

    import java.util.Hashtable; import javax.naming.ldap.*; import javax.naming.directory.*; import java ...

  2. vijos1264:神秘的咒语

    描述 身为拜月教的高级间谍,你的任务总是逼迫你出生入死.比如这一次,拜月教主就派你跟踪赵灵儿一行,潜入试炼窟底. 据说试炼窟底藏着五行法术的最高法术:风神,雷神,雪妖,火神,山神的咒语.为了习得这些法 ...

  3. pushd,popd,dirs,cd -让切换目录更方便

    与linux cd命令相似,用pushd实现在不同目录间切换 在命令行模式下,当你工作在不同目录中,你将发现你有很多时间都浪费在重复输入上如果这些目录不在同一个根目录中,你不得不在转换时输入完整的路径 ...

  4. java中如何将OutputStream转换为InputStream

    在不需要文件生成的情况下,直接将输出流转换成输入流.可使用下面的三种方法: 如果你曾经使用java IO编程,你会很快碰到这种情况,某个类在OutputStream上创建数据而你需要将它发送给某个需要 ...

  5. Cassandra 学习二

    Cassandra的架构 Cassandra的设计目的是处理跨多个节点的大数据工作负载,而没有任何单点故障.Cassandra在其节点之间具有对等分布式系统,并且数据分布在集群中的所有节点之间. 1 ...

  6. Python No module named pkg_resources

    好记性不如烂笔头. I encountered the same ImportError today while trying to use pip. Somehow the setuptools p ...

  7. Android Fragment用法详解(2)--动态添加Fragment

    在上一篇文章<Android Fragment用法详解(1)--静态使用Fragment>我们讲解了Fragment的最简单的用法.这次我们来说一说Fragment复杂一丢丢的用法.在代码 ...

  8. ssh框架整合其他方式(没有hibernate核心配置文件)

  9. 线段树教做人系列(1)HDU4967 Handling the Past

    题意:给你n组操作,分别为压栈,出栈,询问栈顶元素.每一组操作有一个时间戳,每次询问栈顶的元素的操作询问的是在他之前出现的操作,而且时间戳小于它的情况.题目中不会出现栈为空而且出栈的情况. 例如: p ...

  10. Codeforces #505(div1+div2) B Weakened Common Divisor

    题意:给你若干个数对,每个数对中可以选择一个个元素,问是否存在一种选择,使得这些数的GCD大于1? 思路:可以把每个数对的元素乘起来,然后求gcd,这样可以直接把所有元素中可能的GCD求出来,从小到大 ...