洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
我可能根本就没有学过斜率优化……
我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯木厂建在$i$的最小花费
那么状态转移方程就是$$dp[i]=min\{tot-dis[j]*sum[j]-dis[i]*(sum[j]-sum[i])\}$$
然后考虑斜率优化,设$j$比$k$更优,则(一堆乱七八糟的推导之后)有$$\frac{sum[j]*dis[j]-sum[k]-dis[k]}{sum[j]-sum[k]}>dis[i]$$
那么只要考虑维护一个上凸包就可以了
//minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
int sum[N],dis[N],w[N],q[N],dp[N],n,h,t,tot,ans=0x3f3f3f3f;
inline double slope(int j,int k){
return ((sum[j]*dis[j])-(sum[k]*dis[k]))*1.0/(sum[j]-sum[k]);
}
inline int calc(int i,int j){
return tot-sum[j]*dis[j]-dis[i]*(sum[i]-sum[j]);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read();
for(int i=;i<=n;++i) w[i]=read(),dis[i]=read();
for(int i=n;i;--i) dis[i]+=dis[i+];
for(int i=;i<=n;++i) sum[i]=sum[i-]+w[i],tot+=w[i]*dis[i];
for(int i=;i<=n;++i){
while(h<t&&slope(q[h],q[h+])>dis[i]) ++h;
cmin(ans,calc(i,q[h]));
while(h<t&&slope(q[t],q[t-])<slope(q[t-],i)) --t;q[++t]=i;
}
printf("%d\n",ans);
return ;
}
洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)的更多相关文章
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)
题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
随机推荐
- LINUX必须记住的指令
写在前面: 1,<你一定要知道的关于Linux文件目录操作的12个常用命令>是楼主收集的关于Linux文件目录操作最常用的命令,包括文件或目录的新建.拷贝.移动.删除.查看等,是开发人员操 ...
- Java-API-Package:javax.http.servlet
ylbtech-Java-API-Package:javax.http.servlet 1.返回顶部 1. Package javax.servlet.http This chapter descri ...
- IIS:template
ylbtech-IIS: 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 7.返回顶部 8.返回顶部 9.返回顶部 10.返 ...
- 用JS写一个简单的程序,算出100中7的倍数的最大值
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 我的第一个Socket程序-SuperSocket使用入门(一)
第一次使用Socket,遇到过坑,也涨过姿势,网上关于SuperSocket的教程基本都停留在官方给的简单demo上,实际使用还是会碰到一些问题,所以准备写两篇博客,分别来介绍SuperSocket以 ...
- hadoop报错java.io.IOException: Incorrect configuration: namenode address dfs.namenode.servicerpc-address or dfs.namenode.rpc-address is not configured
不多说,直接上干货! 问题详情 问题排查 spark@master:~/app/hadoop$ sbin/start-all.sh This script is Deprecated. Instead ...
- structs2----数据封装以及拦截器
技术分析之在Struts2框架中使用Servlet的API 1. 在Action类中也可以获取到Servlet一些常用的API * 需求:提供JSP的表单页面的数据,在Action中使用Servlet ...
- go语言的源码文件的分类及含义
Go源码文件:名称以.go为后缀,内容以Go语言代码组织的文件 多个Go源码文件是需要用代码包组织起来的 源码文件分为三类:命令源码文件.库源码文件(go语言程序) 测试源码文件(辅助源码文件) 命令 ...
- 用C++实现void reverse(char* str)函数,即反转一个null结尾的字符串.
void reverse(char* str) { char *end = str, *begin=str; char temp; while(*end!='\0') { end++; } end-- ...
- cakephp目录结构