点此看题面

大致题意: 求在给定的两个正整数\(a\)和\(b\)中的所有整数中,\(0\sim9\)各出现了多少次。

数位\(DP\)

很显然,这是一道数位\(DP\)题。

我们可以用前缀和的思想,分别求出小于等于\(b\)时的答案和小于等于\(a-1\)时的答案,然后将两个答案相减,就可以得出\(a\sim b\)之间的答案了。

对于每一位,若设\(x\)为当前需要小于的数字(即\(b\)或\(a-1\))当前可以填的数字有两种情况

①前面的数字已经保证当前数字小于\(x\)。则这位数字可以在\(0\sim9\)中任意填

②前面的数字全部与\(x\)相同位上的数字一样。则这位上填的数字必须小于等于\(x\)这一位上的数字。

还有一个特别要注意的是,对于数字前多出的前导0要单独特判处理

代码

#include<bits/stdc++.h>
#define LL long long
#define N 12
using namespace std;
LL a,b,num[N+5],s[N+5],f[N+5],ans[10][2];//两个ans数组,一个存储小于等于b时的答案,一个存储小于等于a-1时的答案
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(LL &x)
{
x=0;LL f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void dp(LL x,int pos)//数位DP的具体过程
{
register int i,j;LL tot=0,w=x,t;
while(w) num[++tot]=w%10,w/=10;//将x十进制下的每一位分解
for(i=tot;i>0;--i)
{
for(j=0;j<10;ans[j++][pos]+=f[i-1]*num[i]);//第1种情况,该位可以任意填
for(j=0;j<num[i];ans[j++][pos]+=s[i-1]);//第2种情况,这里先处理该位小于x上这位的情况
for(j=i-1,t=0;j>0;--j) (t*=10)+=num[j];//计算出这位填等于x上这位的情况数
ans[num[i]][pos]+=t+1,ans[0][pos]-=s[i-1];//单独处理该位等于x上这位的情况数,并将ans[0]减去有多余前导0的情况数
}
}
int main()
{
register int i;
read(a),read(b);
for(i=s[0]=1;i<N+5;++i)//预处理
f[i]=f[i-1]*10+s[i-1],s[i]=s[i-1]*10;
for(dp(b,0),dp(a-1,1),i=0;i<10;++i)//分别计算出小于等于b和小于等于a-1时的答案
write(ans[i][0]-ans[i][1]),putchar(' ');//将两个答案相减
return 0;
}

【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)的更多相关文章

  1. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  2. bzoj1833: [ZJOI2010]count 数字计数 数位dp

    bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...

  3. [bzoj1833][ZJOI2010]count 数字计数——数位dp

    题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...

  4. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  5. 1833: [ZJOI2010]count 数字计数——数位dp

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...

  6. BZOJ 1833 ZJOI2010 count 数字计数 数位DP

    题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...

  7. BZOJ1833 ZJOI2010 count 数字计数 【数位DP】

    BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...

  8. [BZOJ1833][ZJOI2010]count 数字计数

    [BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...

  9. BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】

    题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...

  10. bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)

    难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...

随机推荐

  1. elasticsearch 基础特点

    1.Elasticsearch对复杂分布式机制的透明隐藏特性 Elasticsearch是一套分布式的系统,分布式是为了应对大数据量,隐藏了复杂的分布式机制 分片机制(我们之前随随便便就将一些docu ...

  2. 再回首HTML

    前言 本阶段视频自己前后看了两遍,感觉效果还是不错的,鉴于昨天上午整理了一些笔记,对HTML的理解深刻了一些.所以在这篇博文中就不再解释关于HTML一些定义的东西,这篇博文主要记录一些常用标记,为以后 ...

  3. 水库(树形dp)

    水库 (树形dp) R国有n座城市和n-1条长度为1的双向道路,每条双向道路连接两座城市,城市之间均相互连通.现在你需要维护R国的供水系统.你可以在一些城市修建水库,在第i个城市修建水库需要每年c_i ...

  4. 洛谷P3128 [USACO15DEC]最大流Max Flow

    P3128 [USACO15DEC]最大流Max Flow 题目描述 Farmer John has installed a new system of N-1N−1 pipes to transpo ...

  5. 消息队列RabbitMQ、缓存数据库Redis

    1.RabbitMQ消息队列 1.1 RabbitMQ简介 AMQP,即Advanced Message Queuing Protocol,高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中 ...

  6. MySQL的复制:MySQL系列之十三

    一.MySQL复制相关概念 主从复制:主节点将数据同步到多个从节点 级联复制:主节点将数据同步到一个从节点,其他的从节点在向从节点复制数据 同步复制:将数据从主节点全部同步到从节点时才返回给用户的复制 ...

  7. [題解](搜索)生日蛋糕(NOI1999)

    搜索剪枝, 1.枚舉上下界: 先$R\subset$$(dep,min(\lfloor\sqrt{n-v}\rfloor,lastr-1))$ 后$H\subset$$(dep,min((n-v)/R ...

  8. python模块之time方法详细介绍

    >>> import time >>> dir(time) ['_STRUCT_TM_ITEMS', '__doc__', '__loader__', '__nam ...

  9. 01-----jQuery介绍

    安装node.js cmd查看 node -v npm -v npm init --yes     初始化 npm install jquery --save   1.为什么要使用jQuery    ...

  10. jsonignore的一个坑

    import org.fasterxml.jackson.annotate.JsonIgnore; 和 import org.codehaus.jackson.annotate.JsonIgnore; ...