【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)
大致题意: 求在给定的两个正整数\(a\)和\(b\)中的所有整数中,\(0\sim9\)各出现了多少次。
数位\(DP\)
很显然,这是一道数位\(DP\)题。
我们可以用前缀和的思想,分别求出小于等于\(b\)时的答案和小于等于\(a-1\)时的答案,然后将两个答案相减,就可以得出\(a\sim b\)之间的答案了。
对于每一位,若设\(x\)为当前需要小于的数字(即\(b\)或\(a-1\))当前可以填的数字有两种情况:
①前面的数字已经保证当前数字小于\(x\)。则这位数字可以在\(0\sim9\)中任意填。
②前面的数字全部与\(x\)相同位上的数字一样。则这位上填的数字必须小于等于\(x\)这一位上的数字。
还有一个特别要注意的是,对于数字前多出的前导0要单独特判处理。
代码
#include<bits/stdc++.h>
#define LL long long
#define N 12
using namespace std;
LL a,b,num[N+5],s[N+5],f[N+5],ans[10][2];//两个ans数组,一个存储小于等于b时的答案,一个存储小于等于a-1时的答案
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(LL &x)
{
x=0;LL f=1;char ch;
while(!isdigit(ch=tc())) f=ch^'-'?1:-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(LL x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void dp(LL x,int pos)//数位DP的具体过程
{
register int i,j;LL tot=0,w=x,t;
while(w) num[++tot]=w%10,w/=10;//将x十进制下的每一位分解
for(i=tot;i>0;--i)
{
for(j=0;j<10;ans[j++][pos]+=f[i-1]*num[i]);//第1种情况,该位可以任意填
for(j=0;j<num[i];ans[j++][pos]+=s[i-1]);//第2种情况,这里先处理该位小于x上这位的情况
for(j=i-1,t=0;j>0;--j) (t*=10)+=num[j];//计算出这位填等于x上这位的情况数
ans[num[i]][pos]+=t+1,ans[0][pos]-=s[i-1];//单独处理该位等于x上这位的情况数,并将ans[0]减去有多余前导0的情况数
}
}
int main()
{
register int i;
read(a),read(b);
for(i=s[0]=1;i<N+5;++i)//预处理
f[i]=f[i-1]*10+s[i-1],s[i]=s[i-1]*10;
for(dp(b,0),dp(a-1,1),i=0;i<10;++i)//分别计算出小于等于b和小于等于a-1时的答案
write(ans[i][0]-ans[i][1]),putchar(' ');//将两个答案相减
return 0;
}
【BZOJ1833】[ZJOI2010] count 数字计数(数位DP)的更多相关文章
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- bzoj1833: [ZJOI2010]count 数字计数 数位dp
bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...
- [bzoj1833][ZJOI2010]count 数字计数——数位dp
题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- 1833: [ZJOI2010]count 数字计数——数位dp
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...
- BZOJ 1833 ZJOI2010 count 数字计数 数位DP
题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...
- BZOJ1833 ZJOI2010 count 数字计数 【数位DP】
BZOJ1833 ZJOI2010 count 数字计数 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包 ...
- [BZOJ1833][ZJOI2010]count 数字计数
[BZOJ1833][ZJOI2010]count 数字计数 试题描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入 输入文件中仅包含一行两个整数a ...
- BZOJ1833 [ZJOI2010]count 数字计数 【数学 Or 数位dp】
题目 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中仅包含一行两个整数a.b,含义如上所述. 输出格式 输出文件中包含一行10个整数, ...
- bzoj1833: [ZJOI2010]count 数字计数&&USACO37 Cow Queueing 数数的梦(数位DP)
难受啊,怎么又遇到我不会的题了(捂脸) 如题,这是一道数位DP,随便找了个博客居然就是我们大YZ的……果然nb,然后就是改改模版++注释就好的了,直接看注释吧,就是用1~B - 1~A-1而已,枚举全 ...
随机推荐
- git教程1-gitlab部署
https://about.gitlab.com/install/#centos-7 https://mirror.tuna.tsinghua.edu.cn/help/gitlab-ce/ gitla ...
- Vue里的nextTick方法
官方解释: 在下次 DOM 更新循环结束之后执行延迟回调.在修改数据之后立即使用这个方法,获取更新后的 DOM. 自己总结: `Vue.nextTick(callback)`,当数据发生变化,更新后执 ...
- CSS(一)清除浮动
问题1:关于清除浮动 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- c#spinLock使用
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u011915028/article/details/53011811 一下解释摘自msdn ...
- 埃氏筛法(求n以内有多少个素数)
题目大意:给定整数n,请问n以内有多少个素数 思路:想必要判断一个数是否是素数,大家都会了,并且可以在O(根号n)的复杂度求出答案,那么求n以内的素数呢,那样求就显得有点复杂了,下面看一下这里介绍的
- Repair 暴力
Description standard input/outputStatements Alex is repairing his country house. He has a rectangula ...
- Zipkin — 微服务链路跟踪.
一.Zipkin 介绍 Zipkin 是什么? Zipkin的官方介绍:https://zipkin.apache.org/ Zipkin是一款开源的分布式实时数据追踪系统(Distributed ...
- arch搭建SVN服务器
一.安装 Install the package Install subversion from the official repositories. Create a repository Crea ...
- (三)Redis两种持久化方案
Redis的持久化策略:2种 RDB方式的持久化是通过快照(snapshotting)完成的,当符合一定条件时Redis会自动将内存中的数据进行快照并持久化到硬盘.RDB是Redis默认采用的持久化方 ...
- java环境安装(win7)
首先,你应该已经安装了 java 的 JDK 了,笔者安装的是:jdk-7u13-windows-x64 接下来主要讲怎么配置 java 的环境变量,也是为了以后哪天自己忘记了做个备份 1.进入&qu ...