题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070

题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最后一次提交是正确的.

思路: 分数规划

二分答案, 然后在 check 函数中查找是否存在某个区j间 [l, r] 使得 sum(l, r) / (r - l + 1) <= mid, 即 sum(l, r) + l * mid <= (r + 1) * mid. 可以用个线段树来维护 sum(l, r) + l * mid . 建树时直接将 l * mid 放入树中, 然后从左到右枚举 r, 对于当前 i, a[i] 对区间 [pre[i] + 1, i] 的贡献为一(区间 [1, pre[i]] 内的贡献之前的a[i]已经计算了) . 这样对于当前更新后, 1 <= j <= i , sum[j] 即为区间 [j, i] 内的贡献. 那么对于当前 i, query(1, i) 就得到了所有以 i 为后缀的区间的贡献最小值. 遍历完 r 后即得到了所有区间的贡献最小值.

最后要注意一下线段树区间更新,区间最值的 lazy 数组维护写法, 最值和区间求和是不同的.

代码:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
using namespace std; const double eps = 1e-;
const int MAXN = 6e4 + ;
int a[MAXN], pre[MAXN], last[MAXN], n;
double sum[MAXN << ], lazy[MAXN << ]; void push_up(int rt){ //向上更新取最值
sum[rt] = min(sum[rt << ], sum[rt << | ]);
} void push_down(int rt){
if(lazy[rt]){//将标记向下更新,维护的是最值,sum不需要求和
lazy[rt << ] += lazy[rt];
lazy[rt << | ] += lazy[rt];
sum[rt << ] += lazy[rt];
sum[rt << | ] += lazy[rt];
lazy[rt] = ;
}
} void build(int l, int r, int rt, double value){
lazy[rt] = ;
if(l == r){
sum[rt] = value * l;
return;
}
int mid = (l + r) >> ;
build(lson, value);
build(rson, value);
push_up(rt);
} void update(int L, int R, int value, int l, int r, int rt){
if(L <= l && R >= r){
lazy[rt] += value;
sum[rt] += value;//维护的是最值,sum不需要求和
return;
}
push_down(rt);
int mid = (l + r) >> ;
if(L <= mid) update(L, R, value, lson);
if(R > mid) update(L, R, value, rson);
push_up(rt);
} double query(int L, int R, int l, int r, int rt){
if(L <= r && R >= r) return sum[rt];
push_down(rt);
double cnt = 1e5;
int mid = (l + r) >> ;
if(L <= mid) cnt = min(cnt, query(L, R, lson));
if(R > mid) cnt = min(cnt, query(L, R, rson));
return cnt;
} bool check(double mid){
build(, n, , mid);
for(int i = ; i <= n; i++){
update(pre[i] + , i, , , n, );
if(query(, i, , n, ) <= (double)mid *(i + )) return true;
}
return false;
} int main(void){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &n);
memset(pre, , sizeof(pre));
memset(last, , sizeof(last));
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
pre[i] = last[a[i]];
last[a[i]] = i;
}
double l = , r = ;
while(r - l > eps){
double mid = (l + r) / ;
if(check(mid)) r = mid - eps;
else l = mid + eps;
}
printf("%.5lf\n", r + eps);
}
return ;
}

hdu6070(分数规划/二分+线段树区间更新,区间最值)的更多相关文章

  1. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  2. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  3. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  4. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  5. hdu6070 Dirt Ratio 二分+线段树

    /** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...

  6. hdu2795(线段树单点更新&区间最值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...

  7. hdu1166(线段树单点更新&区间求和模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 题意:中文题诶- 思路:线段树单点更新,区间求和模板 代码: #include <iost ...

  8. 【HDU】1754 I hate it ——线段树 单点更新 区间最值

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. POJ 2892 Tunnel Warfare(线段树单点更新区间合并)

    Tunnel Warfare Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 7876   Accepted: 3259 D ...

随机推荐

  1. Jquery的ajax获取action中的返回值

    js部分: function check() {  $.ajax({     type : "POST",     url : "myCloudWantseeListHD ...

  2. ES _source字段介绍——json文档,去掉的话无法更新部分文档,最重要的是无法reindex

    摘自:https://es.xiaoleilu.com/070_Index_Mgmt/31_Metadata_source.html The _source field stores the JSON ...

  3. Quality

  4. 【leetcode刷题笔记】Valid Palindrome

    Given a string, determine if it is a palindrome, considering only alphanumeric characters and ignori ...

  5. ES+open-falcon之报警自动发送请求信息

    当我们监控nginx的状态码出现错误状态码的时候, 一般的处理方法是通过kibana查询是哪个接口导致从而确定是哪个服务,再进一步登录业务机器查询业务日志确定原因. 我们现在要做的事情就是将 人为的通 ...

  6. 第K大子集-LH

    题解:搜索+二分 对于每个数有选与不选两种情况.然后我们先搜前一半的状态,每个数选还是不选. 有2^17种,然后我将每种状态拍一个序先存着.然后我再搜后一半的状态,2^18种. 假设后一半某一种情况的 ...

  7. python 3中使用getattr和*args时, 出现传入参数不一致的问题

    今天在用python3的getattr时遇到一个问题, 就是老提示传入参数和函数前面不一致, 代码为: class Test:      def __init__(self, name):       ...

  8. 如何得到DataTable的列名

    foreach (DataColumn dc in dtfood.Columns) { string lm = dc.ColumnName; }

  9. Poj 1017 Packets(贪心策略)

    一.题目大意: 一个工厂生产的产品用正方形的包裹打包,包裹有相同的高度h和1*1, 2*2, 3*3, 4*4, 5*5, 6*6的尺寸.这些产品经常以产品同样的高度h和6*6的尺寸包袱包装起来运送给 ...

  10. 使用TRY CATCH进行SQL Server异常处理

    TRY...CATCH是Sql Server 2005/2008令人印象深刻的新特性.提高了开发人员异常处理能力.没有理由不尝试一下Try.. Catch功能. *      TRY 块 - 包含可能 ...