题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070

题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最后一次提交是正确的.

思路: 分数规划

二分答案, 然后在 check 函数中查找是否存在某个区j间 [l, r] 使得 sum(l, r) / (r - l + 1) <= mid, 即 sum(l, r) + l * mid <= (r + 1) * mid. 可以用个线段树来维护 sum(l, r) + l * mid . 建树时直接将 l * mid 放入树中, 然后从左到右枚举 r, 对于当前 i, a[i] 对区间 [pre[i] + 1, i] 的贡献为一(区间 [1, pre[i]] 内的贡献之前的a[i]已经计算了) . 这样对于当前更新后, 1 <= j <= i , sum[j] 即为区间 [j, i] 内的贡献. 那么对于当前 i, query(1, i) 就得到了所有以 i 为后缀的区间的贡献最小值. 遍历完 r 后即得到了所有区间的贡献最小值.

最后要注意一下线段树区间更新,区间最值的 lazy 数组维护写法, 最值和区间求和是不同的.

代码:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
using namespace std; const double eps = 1e-;
const int MAXN = 6e4 + ;
int a[MAXN], pre[MAXN], last[MAXN], n;
double sum[MAXN << ], lazy[MAXN << ]; void push_up(int rt){ //向上更新取最值
sum[rt] = min(sum[rt << ], sum[rt << | ]);
} void push_down(int rt){
if(lazy[rt]){//将标记向下更新,维护的是最值,sum不需要求和
lazy[rt << ] += lazy[rt];
lazy[rt << | ] += lazy[rt];
sum[rt << ] += lazy[rt];
sum[rt << | ] += lazy[rt];
lazy[rt] = ;
}
} void build(int l, int r, int rt, double value){
lazy[rt] = ;
if(l == r){
sum[rt] = value * l;
return;
}
int mid = (l + r) >> ;
build(lson, value);
build(rson, value);
push_up(rt);
} void update(int L, int R, int value, int l, int r, int rt){
if(L <= l && R >= r){
lazy[rt] += value;
sum[rt] += value;//维护的是最值,sum不需要求和
return;
}
push_down(rt);
int mid = (l + r) >> ;
if(L <= mid) update(L, R, value, lson);
if(R > mid) update(L, R, value, rson);
push_up(rt);
} double query(int L, int R, int l, int r, int rt){
if(L <= r && R >= r) return sum[rt];
push_down(rt);
double cnt = 1e5;
int mid = (l + r) >> ;
if(L <= mid) cnt = min(cnt, query(L, R, lson));
if(R > mid) cnt = min(cnt, query(L, R, rson));
return cnt;
} bool check(double mid){
build(, n, , mid);
for(int i = ; i <= n; i++){
update(pre[i] + , i, , , n, );
if(query(, i, , n, ) <= (double)mid *(i + )) return true;
}
return false;
} int main(void){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &n);
memset(pre, , sizeof(pre));
memset(last, , sizeof(last));
for(int i = ; i <= n; i++){
scanf("%d", &a[i]);
pre[i] = last[a[i]];
last[a[i]] = i;
}
double l = , r = ;
while(r - l > eps){
double mid = (l + r) / ;
if(check(mid)) r = mid - eps;
else l = mid + eps;
}
printf("%.5lf\n", r + eps);
}
return ;
}

hdu6070(分数规划/二分+线段树区间更新,区间最值)的更多相关文章

  1. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  2. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  3. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  4. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  5. hdu6070 Dirt Ratio 二分+线段树

    /** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...

  6. hdu2795(线段树单点更新&区间最值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2795 题意:有一个 h * w 的板子,要在上面贴 n 条 1 * x 的广告,在贴第 i 条广告时要 ...

  7. hdu1166(线段树单点更新&区间求和模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 题意:中文题诶- 思路:线段树单点更新,区间求和模板 代码: #include <iost ...

  8. 【HDU】1754 I hate it ——线段树 单点更新 区间最值

    I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. POJ 2892 Tunnel Warfare(线段树单点更新区间合并)

    Tunnel Warfare Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 7876   Accepted: 3259 D ...

随机推荐

  1. C#返回Json,js解析Json,并添加到select标签中

    后台: List<Student> list=GetAll();//id name string json = new JavaScriptSerializer().Serialize(l ...

  2. Building Performant Expand & Collapse Animations

    t's starting to be pretty common knowledge that there are only 2 things you can animate cheaply in C ...

  3. L101

    It isn't where you came from. It's where you're going that counts.起点并不重要,重要的是,你要去往何方.Nothing is impo ...

  4. 关于c++中命名空间namespace

    一.定义命名空间: 步骤一:在.h文件中:namespace  ns{.......}//将定义的类和全局变量,全局函数写入花括号内. 步骤二:在.cpp文件中: using namespace ns ...

  5. type_traits.h

    type_traits.h // Filename: type_traits.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: ht ...

  6. Struts2 - action通配符映射

    一个 Web 应用可能有成百上千个 action 声明. 可以利用 struts 提供的通配符映射机制把多个彼此相似的映射关系简化为一个映射关系 通配符映射规则 –      若找到多个匹配, 没有通 ...

  7. python实现列队

    1 列队定义 队列是项的有序结合,其中添加新项的一端称为队尾,移除项的一端称为队首.当一个元素从队尾进入队列时,一直向队首移动,直到它成为下一个需要移除的元素为止. 最近添加的元素必须在队尾等待.集合 ...

  8. ACM学习历程—51NOD1028 大数乘法V2(FFT)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1028 题目大意就是求两个大数的乘法. 但是用普通的大数乘法,这 ...

  9. gulp之压缩css

    /** * css压缩 * npm install --save-dev gulp-minify-css * npm install --save-dev gulp-rename * * * 可参考: ...

  10. nodejs 上传图片(服务端输出全部代码)

    下面代码,全部都是nodejs端的,不用客户端代码.也就是,选择图片的form表单以及上传完毕预览图片的html,都是由node服务端输出的. 1 启动代码:(node upload.js) var ...