题目

魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1、2 拼凑起来形成一个魔咒串 [1,2]。

一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒。

例如 S=[1,2,1] 时,它的生成魔咒有 [1]、[2]、[1,2]、[2,1]、[1,2,1] 五种。S=[1,1,1] 时,它的生成魔咒有 [1]、

[1,1]、[1,1,1] 三种。最初 S 为空串。共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符。每次操作后都

需要求出,当前的魔咒串 S 共有多少种生成魔咒。

输入格式

第一行一个整数 n。

第二行 n 个数,第 i 个数表示第 i 次操作加入的魔咒字符。

1≤n≤100000。,用来表示魔咒字符的数字 x 满足 1≤x≤10^9

输出格式

输出 n 行,每行一个数。第 i 行的数表示第 i 次操作后 S 的生成魔咒数量

输入样例

7

1 2 3 3 3 1 2

输出样例

1

3

6

9

12

17

22

题解

用到后缀自动机的一个性质:

节点u所代表的子串数 = step[u] - step[pre[u]]

原因:

显然u所代表的子串数为[min(u),max(u)],其中min,max均代表从根到u的路径的长度最值

而且有这样一个性质:u父亲的max(fa) = min(u) - 1

所以u代表的子串数可以写成如上所示

我们只需要在每次建立父亲指针和断开父亲指针时维护答案就好了

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 200005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
map<int,int> ch[maxn];
int pre[maxn],step[maxn],cnt,last,n;
LL ans;
int upd(int u){return step[u] - step[pre[u]];}
void ins(int x){
int p = last,np = ++cnt;
last = np; step[np] = step[p] + 1;
while (p && !ch[p].count(x)) ch[p][x] = np,p = pre[p];
if (!p) pre[np] = 1,ans += upd(np);
else {
int q = ch[p][x];
if (step[q] == step[p] + 1) pre[np] = q,ans += upd(np);
else {
int nq = ++cnt; step[nq] = step[p] + 1;
ch[nq] = ch[q]; pre[nq] = pre[q]; ans += upd(nq) - upd(q);
pre[np] = pre[q] = nq; ans += upd(np) + upd(q);
while (p && ch[p][x] == q) ch[p][x] = nq,p = pre[p];
}
}
}
int main(){
n = read(); int x; cnt = last = 1;
REP(i,n) x = read(),ins(x),printf("%lld\n",ans);
return 0;
}

BZOJ4516 [Sdoi2016]生成魔咒 【后缀自动机】的更多相关文章

  1. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  2. [bzoj4516][Sdoi2016]生成魔咒——后缀自动机

    Brief Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生 ...

  3. BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]

    4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...

  4. BZOJ 4516: [Sdoi2016]生成魔咒 后缀自动机 性质

    http://www.lydsy.com/JudgeOnline/problem.php?id=4516 http://blog.csdn.net/doyouseeman/article/detail ...

  5. BZOJ 4516 [Sdoi2016]生成魔咒 ——后缀自动机

    本质不同的字串,考虑SA的做法,比较弱,貌似不会. 好吧,只好用SAM了,由于后缀自动机的状态最简的性质, 所有不同的字串就是∑l[i]-l[fa[i]], 然后后缀自动机是可以在线的,然后维护一下就 ...

  6. BZOJ.4516.[SDOI2016]生成魔咒(后缀自动机 map)

    题目链接 后缀数组做法见这. 直接SAM+map.对于每个节点其产生的不同子串数为len[i]-len[fa[i]]. //15932kb 676ms #include <map> #in ...

  7. BZOJ4516: [Sdoi2016]生成魔咒(后缀数组 set RMQ)

    题意 题目链接 Sol 毒瘤SDOI 终于有一道我会做的题啦qwq 首先,本质不同的子串的个数 $ = \frac{n(n + 1)}{2} - \sum height[i]$ 把原串翻转过来,每次就 ...

  8. [SDOI2016]生成魔咒(后缀自动机)

    /* 水题, 根据性质做就行, nq不会对答案产生贡献, 那么只算p的贡献就好了 */ #include<cstdio> #include<algorithm> #includ ...

  9. [SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

    [SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次 ...

随机推荐

  1. shell脚本,awk结合正则来打印文件里面的内容。

    文件内容如下:key1abc d key2 1.想得到如下结果: abc d 2.想得到如下结果: key1key2

  2. swl字符串

    创建字符串方法 去掉时间戳 #define NSLog(FORMAT, ...) printf("%s\n", [[NSString stringWithFormat:FORMAT ...

  3. d3.js--01

    D3 的全称是(Data-Driven Documents),顾名思义可以知道是一个被数据驱动的文档.听名字有点抽象,说简单一点,其实就是一个 JavaScript 的函数库,使用它主要是用来做数据可 ...

  4. 【组合数学】cf660E. Different Subsets For All Tuples

    比较套路的组合数学题 For a sequence a of n integers between 1 and m, inclusive, denote f(a) as the number of d ...

  5. nginx反向代理后端web服务器记录客户端ip地址

    nginx在做反向代理的时候,后端的nginx web服务器log中记录的地址都是反向代理服务器的地址,无法查看客户端访问的真实ip. 在反向代理服务器的nginx.conf配置文件中进行配置. lo ...

  6. session在C#一般处理程序的调用方式

    在C#中有一个一般处理程序,可以快速地进行一些逻辑运算等功能,但在这个页面上,不能直接选择使用session进行页面间的值的传递,如何使得页面可以使用session呢 在页面开头写上 using Sy ...

  7. mod_deflate模块

    mod_deflate模块 压缩模块,使用mod_deflate模块压缩页面优化传输速度 主要是需要设置 1.针对的内容 2.压缩比是多少 可以忽略排除特定旧版本的浏览器的设置.因为那些都太老了,现在 ...

  8. k8s的secret基本概念及案例

    secret相对于configMap,功能上是相似的但是secret是以其他编码方式去记录配置信息的,但是也可以被解读,只不过有技术门槛,不是那么容易就被解读.使用base64可以解码:echo ** ...

  9. PHP 工厂模式介绍

    工厂模式,顾名思义,如同工厂一样,你把原材料放入工厂中,出来的是成品,而你并不需要知道工厂里做了什么.代码中也类似,把主要参数放入一个工厂里,返回的是处理好的数据,我们并不需要工厂里做了什么,只需要知 ...

  10. Android 性能篇 -- 带你领略Android内存泄漏的前世今生

    基础了解 什么是内存泄漏? 内存泄漏是当程序不再使用到的内存时,释放内存失败而产生了无用的内存消耗.内存泄漏并不是指物理上的内存消失,这里的内存泄漏是指由程序分配的内存但是由于程序逻辑错误而导致程序失 ...