邻面合并(merging)

题目描述

给定一个N×MN×M的网格,每个格子上写有0或1。现在用一些长方形覆盖其中写有1的格子,长方形的每条边都要与坐标轴平行。要求:每个写着1的格子都要被覆盖,长方形不可以重叠(重复绘制也多少会增加性能开销),也不能覆盖到任何一个写着0的格子(不然绘制结果就不正确了)。请问最少需要多少长方形?

输入

输入文件第一行两个正整数N,MN,M,表示网格大小为NN行MM列。

接下来的NN行,每行MM个正整数AijAij(保证均为0或1),其中第ii行jj列的正整数表示网格ii行jj列里填的数。

输出

输出文件包含一行一个正整数,表示最少需要的长方形数量。

样例输入

<span style="color:#333333"><span style="color:#333333">4 4
1 1 1 0
1 1 1 1
0 0 1 1
0 0 1 1</span></span>

样例输出

<span style="color:#333333"><span style="color:#333333">3</span></span>

提示

样例解释

一种行的覆盖方案(粗线表示分割线):

数据范围

对于30% 的数据:N,M≤5N,M≤5。

对于100% 的数据:N≤100,M≤8N≤100,M≤8。

来源


solution

状压dp,我想不到

令f[i][S]表示前i行,状态为S

状态为1表示是一个新的开始

比如状态10010

表示划成了2个矩形,开头在1 4

转移时枚举是否能接起来

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 1e9
using namespace std;
int n,m,s[105][10],f[102][1<<9];
int num=0;
bool pd(int k,int S){
for(int i=0;i<m;i++){
int t=(1<<i);
if((S&t)&&s[k][i]==0)return 0;
}
int fl=0;
for(int i=0;i<m;i++){
int t=(1<<i);
if(S&t)fl=1;
if(s[k][i]==1&&!fl)return 0;
if(s[k][i]==0)fl=0;
}
return 1;
}
int cost(int k,int S,int T){
int sum=0;
for(int i=0;i<m;i++){
int t=(1<<i);
if(S&t)sum++;
} for(int i=0;i<m;i++){
int t=(1<<i);
if((S&t)&&(T&t)){
int ed=i;for(;s[k][ed]&&ed<=m;ed++)if(ed!=i&&(S&(1<<ed)))break;
//cout<<"ed "<<ed<<' '<<i<<endl;
bool fl=0;
for(int j=i+1;j<ed;j++)if(T&(1<<j)){fl=1;break;}
for(int j=i+1;j<ed;j++)if(!s[k-1][j]){fl=1;break;}
if(!fl&&((T&(1<<ed))||!s[k-1][ed]))sum--;
}
}
return sum;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=0;j<m;j++){
scanf("%d",&s[i][j]);
} }
for(int i=0;i<=n;i++)
for(int j=0;j<(1<<m);j++)f[i][j]=inf;
f[0][0]=0;
for(int i=1;i<=n;i++){
for(int S=0;S<(1<<m);S++){
if(pd(i,S)){
for(int T=0;T<(1<<m);T++){
if(f[i-1][T]!=inf){
//cout<<i<<' '<<S<<' '<<T<<endl; f[i][S]=min(f[i][S],f[i-1][T]+cost(i,S,T));
//cout<<cost(i,S,T)<<endl;
//system("pause");
}
}
}
}
}
int ans=inf;
for(int S=0;S<(1<<m);S++)ans=min(ans,f[n][S]);
cout<<ans<<endl;
return 0;
}

邻面合并(merging)的更多相关文章

  1. [CSP-S模拟测试]:邻面合并(状压DP)

    题目背景 $NEWorld$作为一个$3D$游戏,对渲染(图形绘制)的效率要求极高.当玩家扩大视野范围时,可见的方块面数量将会迅速增多,以至于大量的顶点处理很快就成为了图形管线中的瓶颈.乔猫想了想,决 ...

  2. [HNOI2009]梦幻布丁 算法技巧之邻接链

    题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输出格式 输入格式: 第 ...

  3. 理解 Git 的基本概念 ( Merging Collaborating Rebasing)

    合并 Merging 在分支上开发新功能后,如何把新功能加入到主分支,让其它人得到你的修改呢?你需要使用命令 git merge 或 git pull. 这两个命令的语法如下: git merge [ ...

  4. NOIP模拟80

    学考+OJ改名祭 T1 邻面合并 解题思路 状压 DP ...(于是贪心竟然有 60pts 的高分?? code) 状态设计的就非常妙了,如果状态是 1 就表示是一个分割点也就是一个矩形的右边界. 那 ...

  5. Noip模拟80 2021.10.18

    预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气 ...

  6. elasticseach multi-field的实际用途

    下面是multi-field的介绍: multi_field 多域类型允许你对同一个值以映射的方式定义成多个基本类型 core_types . 这个非常有用,比如,如果你定义一个 string 类型的 ...

  7. TortoiseSVN中图标的含义

    今天在使用svn时发现有好多不认识了,所以查了下svn帮助手册.借此总结了下 svn 中图标的含义 一个新检出的工作复本使用绿色的勾做重载.表示Subversion状态 正常. 在开始编辑一个文件后, ...

  8. C语言动态内存管理

    1-概述 动态存储管理的基本问题是:系统如何按请求分配内存,如何回收内存再利用.提出请求的用户可能是系统的一个作业,也可能是程序中的一个变量. 空闲块 未曾分配的地址连续的内存区称为“空闲块”. 占用 ...

  9. Git让你从入门到精通,看这一篇就够了!

    简介 Git 是什么? Git 是一个开源的分布式版本控制系统. 什么是版本控制? 版本控制是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统. 什么是分布式版本控制系统? 介绍分布 ...

随机推荐

  1. java基础面试题:Math.round(11.5)等於多少? Math.round(-11.5)等於多少?

    package com.swift; public class Math_Round { public static void main(String[] args) { /* * Math roun ...

  2. webpack 4.x 解决 webpack-dev-server工具在webpack构建的项目中使用问题

    webpack-dev-server工具能实现自动打包编译和热更新 首先将webpack-dev-server安装到项目中 npm install webpack-dev-server -D 这时在命 ...

  3. 学习笔记(六): Regularization for Simplicity

    目录 Overcrossing? L₂ Regularization Lambda Examining L2 regularization Check Understanding Glossay Ov ...

  4. 安装Tesseract

    下载网站 https://digi.bib.uni-mannheim.de/tesseract/

  5. Linux NFS服务器的安装与配置详解

    一.NFS服务简介 NFS是Network File System(网络文件系统).主要功能是通过网络让不同的服务器之间可以共享文件或者目录.NFS客户端一般是应用服务器(比如web,负载均衡等),可 ...

  6. GNU汇编程序框架

    汇编的作用:1.对芯片进行初始化 2. 和C混合编程提升C的运行效率 .section .data < 初始化的数据> .section .bss <未初始化的数据> .sec ...

  7. vue 网页文字中带#的话题颜色高亮

    网页中显示文字时,带#开始和结束的文字蓝色高亮,就像微博话题一样效果如下 html <span v-html="parseComments('#吃货节#有什么好吃的')"&g ...

  8. 设置虚拟机里的Centos7的IP

    输入ip查询命名 ip addr  也可以输入 ifconfig查看ip,但此命令会出现3个条目,centos的ip地址是ens33条目中的inet值. 发现 ens33 没有 inet 这个属性,那 ...

  9. Reading comprehension HDU - 4990 (矩阵快速幂 or 快速幂+等比数列)

    ;i<=n;i++) { )ans=(ans*+)%m; %m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 ...

  10. 大数运算:HDU-1042-N!(附N!位数的计算)

    解题心得: 这里使用了10000进制.很明显,因为是n!所以单个最大的数是10000*10000,使用万进制. 可以借鉴高精度的加法,单个乘了之后在进位. 很坑的一点,0!=1,数学不好WA了三次,尴 ...