hdu 1203 I NEED A OFFER!(01背包)
题意:“至少一份offer的最大概率”。即求拿不到offer的最小概率
(得到offer的最大概率 = 1 - 反例的最小概率)。
状态转移方程:dp[j]= Min(dp[j],dp[j-a[i]]*(1-b[i]))。
注意:0 0 表示输入语句结束。
写这题之前建议大家先了解
2)背包种类:背包算法了解:点击打开链接
这几个超链接仅仅要在百度搜索 “背包思想” 就能够全部出来了。
重要内容剪切例如以下:
动态规划中本阶段的状态往往是上一阶段状态和上一阶段决策的结果。
则其状态转移方程便是:
f[i][v]=max{ f[i-1][v], f[i-1][v-w[i]]+v[i] }。
能够压缩空间,f[v]=max{f[v],f[v-w[i]]+v[i]}
这个方程非常重要,基本上全部跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详解一下:“将前i件物品放入容量为v的背包中”这个子问题。若仅仅考虑第i件物品的策略(放或不放),那么就能够转化为一个仅仅牵扯前i-1件物品的问题。
假设不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”。价值为f[i-1][v];假设放第i件物品。那么问题就转化为“前i-1件物品放入剩下的容量为v-w[i]的背包中”,此时能获得的最大价值就是f
[i-1][v-w[i]]再加上通过放入第i件物品获得的价值v[i]。
// 本人看完这些超链接后就明确了。以后写背包题就是机械化写题了,,哈哈哈!
代码例如以下:
#include<iostream>
#include<stdio.h>
using namespace std;
#define SIZE 11111
double dp[SIZE];
double Min(double x,double y){
return x<y?x:y;
}
int main(){
int i,j;
// n背包容量,m学校数量
int n,m;
// 放入全部学校的费用值
int a[SIZE];
// 放入全部学校成功申请的概率值
double b[SIZE];
while(cin>>n>>m,n+m){
// 输入每一件物品的重量和价值
for(i=0;i<m;i++){
scanf("%d %lf",&a[i],&b[i]);
}
// 申请一个n大小的背包,概率1为最大值
// 背包放入最小值,初始化应该用最大值,由于要调用Min函数
fill(dp,dp+n+1,1);
// 处理n大小的背包如何放概率最小值
for(i=0;i<m;i++){// 学校m
// 从右往左放入数据
// 终于结果是背包以降序的方式排列
for(j=n;j>=a[i];j--){
// 动态转移方程,j物品的价值 = Min(放入物品j,不放入物品j)
dp[j]=Min(dp[j],(dp[j-a[i]])*(1-b[i]));
}
}
// 求出答案
printf("%.1lf%%\n",(1-dp[n])*100);
}
return 0;
}
I NEED A OFFER!
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19874 Accepted Submission(s): 7923
他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每一个学校都有不同的申请费用a(万美元),而且Speakless预计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。
帮帮这个可怜的人吧,帮助他计算一下。他能够收到至少一份offer的最大概率。(假设Speakless选择了多个学校,得到随意一个学校的offer都能够)。
后面的m行。每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
4 0.1
4 0.2
5 0.3
0 0
You should use printf("%%") to print a '%'.
hdu 1203 I NEED A OFFER!(01背包)的更多相关文章
- HDU 1203 I NEED A OFFER! 01背包
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1203 解题思路:简单的01背包,用dp[i]表示花费不超过i时的最大可能性 状态转移方程 dp[i]= ...
- hdu 1203 I NEED A OFFER (0-1背包)
题意分析:0-1背包变形 递推公式:dp[i] = max(dp[i], 1-(1-dp[i-C])*(1-p)) /* I NEED A OFFER! Time Limit: 2000/1000 ...
- HDU 1203 I NEED A OFFER! 01背包 概率运算预处理。
题目大意:中问题就不说了 ^—^~ 题目思路:从题目来看是很明显的01背包问题,被录取的概率记为v[],申请费用记为w[].但是我们可以预先做个处理,使问题解决起来更方便:v[]数组保留不被录取的概率 ...
- HDOJ 1203 I NEED A OFFER!(01背包)
10397507 2014-03-25 23:30:21 Accepted 1203 0MS 480K 428 B C++ 泽泽 题目链接:http://acm.hdu.edu.cn/showprob ...
- HDU 1203 I NEED A OFFER!(01 背包DP)
点我看题目 题意 : 中文题不详述. 思路 :类似于01背包的DP,就是放与不放的问题,不过这个要求概率,至少得到一份offer的反面就是一份也得不到,所以先求一份也得不到的概率,用1减掉就可以得到所 ...
- HDU 1203 I NEED A OFFER (01背包&&概率dp)
M - I NEED A OFFER! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 1203 I NEED A OFFER!(01背包+简单概率知识)
I NEED A OFFER! Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
- 题解报告:hdu 1203 I NEED A OFFER!(01背包)
Problem Description Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了.要申请国外的任何大学,你都要交纳一定的申请费用 ...
- HDU 1203 I NEED A OFFER! (动态规划、01背包、概率)
I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- HDU 3639 Bone Collector II(01背包第K优解)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- C# 自动注册OCX方法
C#开发系统时,有时候会遇到调用其他语言开发的模块.如果对方提供了OCX时,就需要注册使用,但是实时时,每个客户端都注册一遍就比较麻烦.所以需要系统第一次启动时自动注册OCX. 一:C#注册OCX ...
- pat 甲级 1135. Is It A Red-Black Tree (30)
1135. Is It A Red-Black Tree (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
- IPC最快的方式----共享内存(shared memory)
在linux进程间通信的方式中,共享内存是一种最快的IPC方式.因此,共享内存用于实现进程间大量的数据传输,共享内存的话,会在内存中单独开辟一段内存空间,这段内存空间有自己特有的数据结构,包括访问权限 ...
- C#图解教程学习笔记——数据类型与数据存储
一.数据类型1. 预定义类型C#提供16种预定义类型,包括13种简单类型和3种非简单类型:(1)简单类型<1>11种数值类型: 不同长度的有符号和无符号整数类型 浮点数的float和dou ...
- python c++ Visual Studio相关 Unable to find vcvarsall.bat问题
使用Cython编译包的时候报错: Unable to find vcvarsall.bat 说明:https://jingyan.baidu.com/article/adc815138162e8f7 ...
- MVC 二级联动 可以试试
后台代码,获取数据如下: /// <summary> 2 /// 获取省份 3 /// </summary> 4 public JsonResult GetProvinceli ...
- svn安装配置使用小总结
1svn:版本控制系统服务端与客户端协作服务端:subversion客户端:eclipse_svn_site-1.10.5.zip插件1安装问题: 1subversion版本过高 会出现版 ...
- ansible 通过网络下载和上传文件
1.通过http下载文件,并且不验证证书 - name: download files by https get_url: url: https://robin.org.cn/test.zip des ...
- 2016北京集训测试赛(九)Problem C: 狂飙突进的幻想乡
Solution 我们发现, 对于一条路径来说, 花费总时间为\(ap + q\), 其中\(p\)和\(q\)为定值. 对于每个点, 我们有多条路径可以到达, 因此对于每个区间中的\(a\)我们可以 ...
- Visual Studio开启SSL的支持
前提: 请确保已经安装了IIS Express 具体操作: 1.web项目->[右键]->[使用IIS Express]转换工程的Web服务器. 2.点击web项目,按[ctrl]+[w] ...