传送门

【问题分析】

最大费用最大流问题。

【建模方法】

把网格中每个位置抽象成网络中一个节点,建立附加源S汇T。

1、对于每个顶点i,j为i东边或南边相邻的一个节点,连接节点i与节点j一条容量为1,费用为该边价值的有向边。 
2、对于每个顶点i,j为i东边或南边相邻的一个节点,连接节点i与节点j一条容量为无穷大,费用为0的有向边。 
3、从S到每个出发点i连接一条容量为该点出发的机器人数量,费用为0的有向边。 
4、从每个目标点i到T连接一条容量为可以到达该点的机器人数量,费用为0的有向边。

求最大费用最大流,最大费用流值就采集到的生物标本的最高总价值。

【建模分析】

这个问题可以看做是多出发点和目的地的网络运输问题。每条边的价值只能计算一次,容量限制要设为1。同时还将要连接上容量不限,费用为0的重边。由于“多个深海机器人可以在同一时间占据同一位置”,所以不需限制点的流量,直接求费用流即可。

吐槽:这出题人语文tm谁教的,输入看了我老半天

只需要知道权值不在点,而到了边上,而起点和终点变成了多个,起点和终点都有容量限制。

反而使题目变简单了(因为不再有没有权值的边,而且权值在边上比权值在点上多了一个好处——不用拆点)。

——代码

 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
#define N 1000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int a, b, n, m, cnt, s, t;
int dis[N], pre[N];
int head[N], to[N << ], val[N << ], cost[N << ], next[N << ];
bool vis[N]; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline int hash(int x, int y)
{
return x * m + y;
} inline void add2(int x, int y, int z, int c)
{
to[cnt] = y;
val[cnt] = z;
cost[cnt] = c;
next[cnt] = head[x];
head[x] = cnt++;
} inline void add(int x, int y, int z, int c)
{
add2(x, y, z, c);
add2(y, x, , -c);
} inline bool spfa()
{
int i, u, v;
std::queue <int> q;
memset(vis, , sizeof(vis));
memset(pre, -, sizeof(pre));
memset(dis, / , sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
vis[u] = ;
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] > dis[u] + cost[i])
{
dis[v] = dis[u] + cost[i];
pre[v] = i;
if(!vis[v])
{
q.push(v);
vis[v] = ;
}
}
}
}
return pre[t] ^ -;
} inline int dinic()
{
int i, d, sum = ;
while(spfa())
{
d = INF;
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]]) d = min(d, val[i]);
for(i = pre[t]; i ^ -; i = pre[to[i ^ ]])
{
val[i] -= d;
val[i ^ ] += d;
}
sum += dis[t] * d;
}
return sum;
} int main()
{
int i, j, k, x, y;
a = read();
b = read();
n = read();
m = read();
n++, m++;
s = , t = N - ;
memset(head, -, sizeof(head));
for(i = ; i < n; i++)
for(j = ; j < m; j++)
{
x = read();
add(hash(i, j), hash(i, j + ), , -x);
add(hash(i, j), hash(i, j + ), INF, );
}
for(j = ; j <= m; j++)
for(i = ; i < n - ; i++)
{
x = read();
add(hash(i, j), hash(i + , j), , -x);
add(hash(i, j), hash(i + , j), INF, );
}
while(a--)
{
k = read();
x = read();
y = read();
add(s, hash(x, y + ), k, );
}
while(b--)
{
k = read();
x = read();
y = read();
add(hash(x, y + ), t, k, );
}
printf("%d\n", -dinic());
return ;
}

[CODEVS1917] 深海机器人问题(最小费用最大流)的更多相关文章

  1. nyoj 712 探 寻 宝 藏--最小费用最大流

    问题 D: 探 寻 宝 藏 时间限制: 1 Sec  内存限制: 128 MB 题目描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有 ...

  2. [板子]最小费用最大流(Dijkstra增广)

    最小费用最大流板子,没有压行.利用重标号让边权非负,用Dijkstra进行增广,在理论和实际上都比SPFA增广快得多.教程略去.转载请随意. #include <cstdio> #incl ...

  3. bzoj1927最小费用最大流

    其实本来打算做最小费用最大流的题目前先来点模板题的,,,结果看到这道题二话不说(之前打太多了)敲了一个dinic,快写完了发现不对 我当时就这表情→   =_=你TM逗我 刚要删突然感觉dinic的模 ...

  4. ACM/ICPC 之 卡卡的矩阵旅行-最小费用最大流(可做模板)(POJ3422)

    将每个点拆分成原点A与伪点B,A->B有两条单向路(邻接表实现时需要建立一条反向的空边,并保证环路费用和为0),一条残留容量为1,费用为本身的负值(便于计算最短路),另一条残留容量+∞,费用为0 ...

  5. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  6. P3381 【模板】最小费用最大流

    P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行 ...

  7. 【BZOJ-3876】支线剧情 有上下界的网络流(有下界有源有汇最小费用最大流)

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 821  Solved: 502[Submit][Status ...

  8. hdu 4411 2012杭州赛区网络赛 最小费用最大流 ***

    题意: 有 n+1 个城市编号 0..n,有 m 条无向边,在 0 城市有个警察总部,最多可以派出 k 个逮捕队伍,在1..n 每个城市有一个犯罪团伙,          每个逮捕队伍在每个城市可以选 ...

  9. UVa11082 Matrix Decompressing(最小费用最大流)

    题目大概有一个n*m的矩阵,已知各行所有数的和的前缀和和各列所有数的和的前缀和,且矩阵各个数都在1到20的范围内,求该矩阵的一个可能的情况. POJ2396的弱化版本吧..建图的关键在于: 把行.列看 ...

  10. UVa12092 Paint the Roads(最小费用最大流)

    题目大概说一个n个点m条带权有向边的图,要给边染色,染色的边形成若干个回路且每个点都恰好属于其中k个回路.问最少要染多少边权和的路. 一个回路里面各个点的入度=出度=1,那么可以猜想知道各个点如果都恰 ...

随机推荐

  1. Html.Action Html.RenderAction Html.Partial Html.RenderPartial Url.Action Html.ActionLink 大括号和小括号区别

    在查阅了一些资料后,结论如下: Action 是以mvchtmlstring的方式返回一个结果,RenderAction 无返回值,速度上action慢于RenderAction partial和Re ...

  2. Python 进程 线程总结

    操作系统的底层是 进程 线程 实现的 进程 操作系统完成系统进程的切换,中间有状态的保存.进程有自己独立的空间,进程多,资源消耗大 进程是最小的资源管理单位 可以理解为盛放线程的容器 线程 线程是最小 ...

  3. linux文件查找-find命令

    find命令:用于在文件树中查找文件,并作出相应的处理 1.find命令的格式: find pathname -options [-print -exec -ok ...] {}\ 2.find命令的 ...

  4. 字符编码:BSTR

    typedef wchar_t WCHAR; typedef WCHAR OLECHAR; typedef OLECHAR __RPC_FAR *BSTR;;

  5. 《队长说得队》第八次团队作业Alpha冲刺

    项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...

  6. javaweb基础(17)_jsp九个内置对象

    一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...

  7. 使用HTML5语义标签时要注意的问题

    header,nav,section,article,aside,figue,figcaption,footer以上这些标签(除figcaption标签外)都是块级标签,为了让这些标签及元素在所有的浏 ...

  8. linux虚拟机配置网络

    第一步.网络模式设置为桥接模式   第二步.设置ip和掩码 vim /etc/sysconfig/network-scripts/ifcfg-ens33 ens33为当前机器的网卡名称  在文件尾部添 ...

  9. 深入理解ES6箭头函数的this以及各类this面试题总结

    ES6中新增了箭头函数这种语法,箭头函数以其简洁性和方便获取this的特性,俘获了大批粉丝儿 它也可能是面试中的宠儿, 我们关键要搞清楚 箭头函数和普通函数中的this 一针见血式总结: 普通函数中的 ...

  10. mariadb多源主从复制错误跳过.md

    mysql 的主从错误跳过和mariadb的多源主从复制错误跳过操作不同,请注意: 更改会话的default_master_connection变量 STOP SLAVE 'slave_account ...