题目

Doris刚刚学习了fibonacci数列。用f[i]表示数列的第i项,那么

f[0]=0

f[1]=1

f[n]=f[n-1]+f[n-2],n>=2

Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i,

j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对10^9+7取模。

输入格式

有多组测试数据。

第一个一个数T,表示数据组数。

接下来T行,每行两个数n,m

T<=1000,1<=n,m<=10^6

输出格式

输出T行,第i行的数是第i组数据的结果

输入样例

3

2 3

4 5

6 7

输出样例

1

6

960

题解

一道满是套路的莫比乌斯反演题

我们要求:

\[\prod\limits_{i=1}^{N}\prod\limits_{j=1}^{M} f[gcd(i,j)]
\]

根据莫比乌斯反演的套路,我们将gcd改为枚举d

\[\prod\limits_{d=1}^{N} f[d]^{\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M} 1 [gcd(i,j) == d]}
\]

然后把指数中的\(d\)提掉

\[\prod\limits_{d=1}^{N} f[d]^{\sum\limits_{i=1}^{\lfloor \frac{N}{d} \rfloor}\sum\limits_{j=1}^{\lfloor \frac{M}{d} \rfloor} 1 [gcd(i,j) == 1]}
\]

然后指数部分就是经典的莫比乌斯反演

\[\prod\limits_{d=1}^{N} f[d]^{\sum\limits_{i=1}^{\lfloor \frac{N}{d} \rfloor} \mu(i) * \lfloor \frac{N}{i * d} \rfloor * \lfloor \frac{M}{i * d} \rfloor}
\]

如果只有一组询问,这样接近\(O(n)\)可以过,但是多组询问,我们考虑继续优化

我们有一个枚举\(i * d\)的套路

我们记\(T = i * d\)

\[\prod\limits_{T=1}^{N} \prod\limits_{d|T} f[d]^{\mu(\frac{T}{d}) * \lfloor \frac{N}{T} \rfloor * \lfloor \frac{M}{T} \rfloor}
\]

划分一下:

\[\prod\limits_{T=1}^{N} ( \prod\limits_{d|T} f[d]^{\mu(\frac{T}{d})} ) ^ {\lfloor \frac{N}{T} \rfloor * \lfloor \frac{M}{T} \rfloor}
\]

容易发现,内层的东西就是关于\(T\)的因子的积,根据经验,这玩意可以通过枚举\(O(nlogn)\)预处理

外层是只与\(T\)有关的整除,可以\(O(\sqrt{N})\)分块

那我们就用\(O(nlogn + T\sqrt{N})\)的复杂度做完了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define res register
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000,P = 1000000007,md = 1000000006;
int fv[maxn],f[maxn],g[maxn],gv[maxn];
int mu[maxn],p[maxn],fac[maxn],pi;
int isn[maxn];
int qpow(int a,LL b){
b = (b % md + md) % md;
int ans = 1;
for (; b; b >>= 1,a = (LL)a * a % P)
if (b & 1) ans = (LL)ans * a % P;
return ans;
}
void init(){
mu[1] = 1;
for (res int i = 2; i < maxn; i++){
if (!isn[i]) p[++pi] = i,mu[i] = -1;
for (res int j = 1; j <= pi && i * p[j] < maxn; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
f[0] = 0; f[1] = 1;
fv[0] = 1; fv[1] = 1;
for (res int i = 2; i < maxn; i++){
f[i] = (f[i - 1] + f[i - 2]) % P;
fv[i] = qpow(f[i],P - 2);
}
for (res int i = 1; i < maxn; i++) g[i] = 1;
for (res int i = 1; i < maxn; i++){
for (int j = i; j < maxn; j += i){
if (mu[j / i] == 1) g[j] = (LL)g[j] * f[i] % P;
if (mu[j / i] == -1) g[j] = (LL)g[j] * fv[i] % P;
}
}
g[0] = gv[0] = 1;
gv[1] = qpow(g[1],P - 2);
for (res int i = 2; i < maxn; i++){
g[i] = (LL)g[i] * g[i - 1] % P;
gv[i] = qpow(g[i],P - 2);
}
}
int main(){
init();
int n,m,T;
LL ans;
cin >> T;
while (T--){
cin >> n >> m;
ans = 1;
if (n > m) swap(n,m);
for (res int i = 1,nxt; i <= n; i = nxt + 1){
nxt = min(n / (n / i),m / (m / i));
ans = (LL)ans * qpow((LL)g[nxt] * gv[i - 1] % P,(LL)(n / i) * (m / i)) % P;
}
cout << ans << endl;
}
return 0;
}

BZOJ4816 [Sdoi2017]数字表格 【莫比乌斯反演】的更多相关文章

  1. BZOJ4816 SDOI2017 数字表格 莫比乌斯反演

    传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...

  2. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  3. 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演

    题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...

  4. [bzoj4816][Sdoi2017]数字表格 (反演+逆元)

    (真不想做莫比乌斯了) 首先根据题意写出式子 ∏(i=1~n)∏(j=1~m)f[gcd(i,j)] 很明显的f可以预处理出来,解决 根据套路分析,我们可以先枚举gcd(i,j)==d ∏(d=1~n ...

  5. BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...

  6. BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演

    大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...

  7. luogu3704 [SDOI2017]数字表格(莫比乌斯反演)

    link 设\(f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2}(n\ge 2)\) 求\(\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}\),多组询问, ...

  8. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  9. [SDOI2017]数字表格 --- 套路反演

    [SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...

  10. 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]

    数字表格 Time Limit: 50 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...

随机推荐

  1. VB SMTP用户验证发送mail

    转自 http://www.jishuzh.com/program/vb-smtp%E7%94%A8%E6%88%B7%E9%AA%8C%E8%AF%81%E5%8F%91%E9%80%81mail. ...

  2. Elastic Search Java Api 创建索引结构,添加索引

    创建TCP客户端 Client client = new TransportClient() .addTransportAddress(new InetSocketTransportAddress( ...

  3. PAT (Basic Level) Practise (中文)- 1010. 一元多项式求导 (25)

    http://www.patest.cn/contests/pat-b-practise/1010 设计函数求一元多项式的导数.(注:xn(n为整数)的一阶导数为n*xn-1.) 输入格式:以指数递降 ...

  4. HTML DOM Frame 的 src

    定义和用法 src 属性可设置或返回应当被载入框架中的文档的 URL. 该属性只是 HTML 的 <frame> 标记的一个对应,并不是 Window.location 这样的 Locat ...

  5. eclipse 中main()函数中的String[] args如何使用?通过String[] args验证账号密码的登录类?静态的主方法怎样才能调用非static的方法——通过生成对象?在类中制作一个方法——能够修改对象的属性值?

    eclipse 中main()函数中的String[] args如何使用? 右击你的项目,选择run as中选择 run configuration,选择arguments总的program argu ...

  6. 【STL学习笔记】一、STL体系

    目录 1.标准库以header files形式呈现 2.namespce命名空间 3.STL与OO 4.STL六组件及其关系 5.STL组件例子 6.range-based for statement ...

  7. STL之map操作[转]

    转自https://www.cnblogs.com/yutongzhu/p/5884269.html 作者彼得朱 map 是一种有序无重复的关联容器. 关联容器与顺序容器不同,他们的元素是按照关键字来 ...

  8. 一些恶搞人的c++程序

    top1: 不停打开的cmd(磁盘操作系统) 代码如下: #include<windows.h> using namespace std; int main() { system(&quo ...

  9. Linux常用文档操作命令--2

    4.文档压缩与解压操作 在Linux中常见的压缩文件有:*.tar.gz.*.tgz.*.gz.*.Z.*bz2等.其每种不同的压缩文件对印的压缩和解压命令也不同. *.tar.gz :tar程序打包 ...

  10. Python爬虫系列-Selenium+Chrome/PhantomJS爬取淘宝美食

    1.搜索关键字 利用Selenium驱动浏览器搜索关键字,得到查询后的商品列表 2.分析页码并翻页 得到商品页码数,模拟翻页,得到后续页面的商品列表 3.分析提取商品内容 利用PyQuery分析源码, ...