BZOJ4816 [Sdoi2017]数字表格 【莫比乌斯反演】
题目
Doris刚刚学习了fibonacci数列。用f[i]表示数列的第i项,那么
f[0]=0
f[1]=1
f[n]=f[n-1]+f[n-2],n>=2
Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i,
j的最大公约数。Doris的表格中共有n×m个数,她想知道这些数的乘积是多少。答案对10^9+7取模。
输入格式
有多组测试数据。
第一个一个数T,表示数据组数。
接下来T行,每行两个数n,m
T<=1000,1<=n,m<=10^6
输出格式
输出T行,第i行的数是第i组数据的结果
输入样例
3
2 3
4 5
6 7
输出样例
1
6
960
题解
一道满是套路的莫比乌斯反演题
我们要求:
\]
根据莫比乌斯反演的套路,我们将gcd改为枚举d
\]
然后把指数中的\(d\)提掉
\]
然后指数部分就是经典的莫比乌斯反演
\]
如果只有一组询问,这样接近\(O(n)\)可以过,但是多组询问,我们考虑继续优化
我们有一个枚举\(i * d\)的套路
我们记\(T = i * d\)
有
\]
划分一下:
\]
容易发现,内层的东西就是关于\(T\)的因子的积,根据经验,这玩意可以通过枚举\(O(nlogn)\)预处理
外层是只与\(T\)有关的整除,可以\(O(\sqrt{N})\)分块
那我们就用\(O(nlogn + T\sqrt{N})\)的复杂度做完了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
#define res register
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000,P = 1000000007,md = 1000000006;
int fv[maxn],f[maxn],g[maxn],gv[maxn];
int mu[maxn],p[maxn],fac[maxn],pi;
int isn[maxn];
int qpow(int a,LL b){
b = (b % md + md) % md;
int ans = 1;
for (; b; b >>= 1,a = (LL)a * a % P)
if (b & 1) ans = (LL)ans * a % P;
return ans;
}
void init(){
mu[1] = 1;
for (res int i = 2; i < maxn; i++){
if (!isn[i]) p[++pi] = i,mu[i] = -1;
for (res int j = 1; j <= pi && i * p[j] < maxn; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
f[0] = 0; f[1] = 1;
fv[0] = 1; fv[1] = 1;
for (res int i = 2; i < maxn; i++){
f[i] = (f[i - 1] + f[i - 2]) % P;
fv[i] = qpow(f[i],P - 2);
}
for (res int i = 1; i < maxn; i++) g[i] = 1;
for (res int i = 1; i < maxn; i++){
for (int j = i; j < maxn; j += i){
if (mu[j / i] == 1) g[j] = (LL)g[j] * f[i] % P;
if (mu[j / i] == -1) g[j] = (LL)g[j] * fv[i] % P;
}
}
g[0] = gv[0] = 1;
gv[1] = qpow(g[1],P - 2);
for (res int i = 2; i < maxn; i++){
g[i] = (LL)g[i] * g[i - 1] % P;
gv[i] = qpow(g[i],P - 2);
}
}
int main(){
init();
int n,m,T;
LL ans;
cin >> T;
while (T--){
cin >> n >> m;
ans = 1;
if (n > m) swap(n,m);
for (res int i = 1,nxt; i <= n; i = nxt + 1){
nxt = min(n / (n / i),m / (m / i));
ans = (LL)ans * qpow((LL)g[nxt] * gv[i - 1] % P,(LL)(n / i) * (m / i)) % P;
}
cout << ans << endl;
}
return 0;
}
BZOJ4816 [Sdoi2017]数字表格 【莫比乌斯反演】的更多相关文章
- BZOJ4816 SDOI2017 数字表格 莫比乌斯反演
传送门 做莫比乌斯反演题显著提高了我的\(\LaTeX\)水平 推式子(默认\(N \leq M\),分数下取整,会省略大部分过程) \(\begin{align*} \prod\limits_{i= ...
- [Sdoi2017]数字表格 [莫比乌斯反演]
[Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...
- 【bzoj4816】[Sdoi2017]数字表格 莫比乌斯反演
题目描述 Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生 ...
- [bzoj4816][Sdoi2017]数字表格 (反演+逆元)
(真不想做莫比乌斯了) 首先根据题意写出式子 ∏(i=1~n)∏(j=1~m)f[gcd(i,j)] 很明显的f可以预处理出来,解决 根据套路分析,我们可以先枚举gcd(i,j)==d ∏(d=1~n ...
- BZOJ.4816.[SDOI2017]数字表格(莫比乌斯反演)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Descriptio ...
- BZOJ 4816 [Sdoi2017]数字表格 ——莫比乌斯反演
大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include & ...
- luogu3704 [SDOI2017]数字表格(莫比乌斯反演)
link 设\(f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2}(n\ge 2)\) 求\(\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)}\),多组询问, ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [SDOI2017]数字表格 --- 套路反演
[SDOI2017]数字表格 由于使用markdown的关系 我无法很好的掌控格式,见谅 对于这么简单的一道题竟然能在洛谷混到黑,我感到无语 \[\begin{align*} \prod\limits ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
随机推荐
- Windows 漏洞利用开发
第一阶段:简单栈溢出 分析栈溢出原理 寻找溢出点,了解pattern_create和pattern_offset计算溢出点的原理 寻找JMP ESP跳板,分析利用JMP ESP跳板劫持程序流的原理 编 ...
- 掘金 里面 写文章 带目录的时候 用#(空格)标题 后面用## title,一个页面只有一个H1
掘金 里面 写文章 带目录的时候 用#(空格)标题 后面用## title,一个页面只有一个H1
- 解决sublime text 2总是在新窗口中打开文件(标签中打开)
在mac下不是很喜欢sublime text 2 总是在新窗口中打开文件,很麻烦,文件打多了,就会出现N多窗口,虽然可以直接打开当前目录可以解决,但有时候查看其它项目中的单个文件,就比较麻烦.百度一直 ...
- CPP-基础:有关调用约定
在C语言中,假设咱们有这样的一个函数:int function(int a,int b) 调历时只有用result = function(1,2)的方法就能利用这个函数.然而,当高档语言被编译成计算机 ...
- javaweb基础(15)_jsp基础语法
任何语言都有自己的语法,JAVA中有,JSP虽然是在JAVA上的一种应用,但是依然有其自己扩充的语法,而且在JSP中,所有的JAVA语句都可以使用. 一.JSP模版元素 JSP页面中的HTML内容称之 ...
- 使用lua实现Spine动画的预加载
创建spine动画有两种方法,分别是createwithfile和createwithdata. createWithFile是通过加载动作数据马上进行创建,如果spine动画中的json文件大小超过 ...
- poj1265 Area
题目描述: vjudge POJ 由于题目乱码概括一下题意: 给出一个路径,求围成多边形中内部点数.边上点数(包括顶点)以及面积. 题解: 边上点数=$\sum gcd(dx,dy)$ $Pick$定 ...
- 【差分约束】poj1275Cashier Employment
比较经典的差分约束 Description A supermarket in Tehran is open 24 hours a day every day and needs a number of ...
- 【Git版本控制】git中reset命令的详解
git reset 命令详解(一) git reset 命令详解(二) reset命令的语法:git reset [选项] [版本号] [要回退的目标] 选项:--soft仅将head指针指向历史 ...
- release判断系统
#!/bin/bash # Name: Atomic Archive configuration script # Copyright Atomicorp, 2002-2018 # License: ...