题目链接

  数论果然是硬伤qwq  还是智商上的硬伤

  我们来讲两个道理

  No.1  求1~i!中与i!互质的数的个数

  实际上就是求i!的欧拉函数

  有如下递推式:

  f[1]=1

  if(i为合数)  f[i]=f[i-1]*i;

  if(i为素数)  f[i]=f[i-1]*(i-1);

  证明如下

  首先我们有个神奇引理。叫做:如果n=p1a1*p2a2*………………*pkak是n的素数幂乘积表达式,那么有

  $phi[n]=n*\frac{p1-1}{p1}*\frac{p2-1}{p2}*……*\frac{pk-1}{pk}$

  所以说我们的$phi[n!]=n!*\frac{p1-1}{p1}*\frac{p2-1}{p2}*……*\frac{pk-1}{pk}$

  那么首先我们知道n!是从1乘到n(废话)

  那么注意(敲黑板)phi[n]的质因子就是1到n里的质数对不对

  我们现在就把所有的分母约掉

  所以phi[n]就变成了(所有合数的乘积)*(所有质数-1的乘积)

  于是递推式得证

  然后第二个问题,就是如果gcd(a,b)==1,那么gcd(a*k+b,b)=1

  这个东西有什么用呢?

  我们设n!为mul[n]。

  由于n>=m,所以mul[n]>=mul[m],并且mul[n]一定是mul[m]的整数倍。

  这样我们发现$mul[n]=mul[m]*\frac{mul[n]}{mul[m]}$

  所以说1到mul[n]中和mul[m]互质的,就等于1~mul[m]中与mul[m]互质的,再乘上$\frac{mul[n]}{mul[m]}$

  然后逆元乱搞搞就好了qwq

  

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cstdlib>
#define maxn 10000020 inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} bool s[maxn];
int prime[maxn],tot;
int mul[maxn];
int f[maxn]; long long Pow(long long n,int x,int p){
long long ans=;
while(x){
if(x&) ans=(ans*n)%(long long)p;
n=(n*n)%(long long)p;
x>>=;
}
return ans;
} int main(){
int T=read(),p=read();
s[]=mul[]=f[]=;
for(int i=;i<=maxn;++i){
if(!s[i])
prime[++tot]=i;
for(int j=;j<=tot&&(long long)prime[j]*i<=maxn;++j){
s[i*prime[j]]=;
if(!(i%prime[j])) break;
}
}
for(int i=;i<=maxn;++i){
mul[i]=((long long)mul[i-]*(long long)i)%(long long)p;
if(s[i]) f[i]=((long long)f[i-]*(long long)i)%(long long)p;
else f[i]=((long long)f[i-]*(long long)(i-))%(long long)p;
}
while(T--){
int n=read(),m=read();
printf("%lld\n",(long long)(((long long)f[m]*(long long)mul[n])%(long long)p*Pow(mul[m],p-,p))%p);
}
return ;
}

【Luogu】P2155沙拉公主的困惑(数论)的更多相关文章

  1. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  2. 【BZOJ2186】【SDoi2008】沙拉公主的困惑 数论

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...

  3. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  4. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

  5. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

  6. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  7. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

  8. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  9. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

随机推荐

  1. UVA 11214 Guarding the Chessboard 守卫棋盘(迭代加深+剪枝)

    暴力,和八皇后很像,用表示i+j和i-j标记主对角线,但是还是要加一些的剪枝的. 1.最裸的暴搜 6.420s,差点超时 2.之前位置放过的就没必要在放了,每次从上一次放的位置开始放 0.400s # ...

  2. css设置禁止文字被选中

    // 禁止文字被鼠标选中 moz-user-select: -moz-none; -moz-user-select: none; -o-user-select:none; -khtml-user-se ...

  3. Hbase 操作工具类

    依赖jar <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-cli ...

  4. linux目录结构及文件管理

    Linux的目录结构: /            根分区 linux文件系统的起点 /bin           普通用户的命令,普通用户能使用 /sbin         管理员使用的命令,只有管理 ...

  5. QT+event() + 事件过滤器

    其存在的意义: mywidget.h: #ifndef MYWIDGET_H #define MYWIDGET_H #include <QWidget> namespace Ui { cl ...

  6. Golang glog使用详解

    golang/glog 是 C++ 版本 google/glog 的 Go 版本实现,基本实现了原生 glog 的日志格式.在 Kuberntes 中,glog 是默认日志库. glog 的使用与特性 ...

  7. 响应者链和Hit-Test 机制

    概念: 响应者 : 对用户交互动作事件进行响应的对象.响应者链:成为处理事件的响应者的先后顺序链. 1.Hit-Test 机制 当用户触摸(Touch)屏幕进行交互时,系统首先要找到响应者(Respo ...

  8. java 会话跟踪技术

    1.session用来表示用户会话,session对象在服务端维护,一般tomcat设定session生命周期为30分钟,超时将失效,也可以主动设置无效: 2.cookie存放在客户端,可以分为内存c ...

  9. C++ 学习笔记(三)string 类

    在C语言中如果想要使用字符串那么有两种方法: 1.定义char型数组:char[10]; 然后将每个字符填充到对应的位置. 优点:这种方式将字符串放在内存所以每个位置都可以修改. 缺点:赋值比较麻烦, ...

  10. GoogleTest 之路1-Generic Build Instructions编译指导总方案

    准备工作 为了在你的测试中使用GoogleTest, 你必须让你的编译系统 知道到哪里去寻找GoogleTest 的头文件和源文件. 具体的方法只能依赖于你具体使用的哪种编译系统了,一般来讲这个非常容 ...