题意翻译

约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体.

通过每条小径都需要消耗一定的时间.约翰打算升级其中\(K\)条小径,使之成为高 速公路.在高速公路上的通行几乎是瞬间完成的,所以高速公路的通行时间为\(0\).

请帮助约翰决定对哪些小径进行升级,使他每天从\(1\)号牧场到第\(N\)号牧场所花的时间最短

题目描述

Farmer John dutifully checks on the cows every day. He traverses some of the \(M (1 <= M <= 50,000)\) trails conveniently numbered \(1..M\) from pasture \(1\) all the way out to pasture \(N\) (a journey which is always possible for trail maps given in the test data). The \(N\) (\(1 <= N <= 10,000\)) pastures conveniently numbered \(1..N\) on Farmer John's farm are currently connected by bidirectional dirt trails. Each trail i connects pastures \(P1_i\) and \(P2_i\) (\(1 <= P1_i <= N; 1 <= P2_i <= N\)) and requires \(T_i\) (\(1 <= T_i <= 1,000,000\)) units of time to traverse.

He wants to revamp some of the trails on his farm to save time on his long journey. Specifically, he will choose \(K\) (\(1 <= K <= 20\)) trails to turn into highways, which will effectively reduce the trail's traversal time to \(0\). Help FJ decide which trails to revamp to minimize the resulting time of getting from pasture \(1\) to \(N\).

TIME LIMIT: \(2\) seconds

输入输出格式

输入格式:

  • Line \(1\): Three space-separated integers: \(N, M\), and \(K\)

  • Lines \(2..M+1\): Line \(i+1\) describes trail i with three space-separated integers: \(P1_i, P2_i\), and \(T_i\)

输出格式:

  • Line \(1\): The length of the shortest path after revamping no more than \(K\) edges

输入输出样例

输入样例#1:

4 4 1
1 2 10
2 4 10
1 3 1
3 4 100

输出样例#1:

1

说明

\(K\) is \(1\); revamp trail \(3->4\) to take time \(0\) instead of \(100\). The new shortest path is \(1->3->4\), total traversal time now \(1\).

思路:依旧是分层最短路,这次的分层最短是的\(k\)是有\(k\)次可以不花费任何代价去走一条路,那么我们把图分为\(n\)层,每条边连向映射点与原来边的起来的距离为\(0\),然后跑\(dijkstra\),就做完了。

代码:

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cctype>
#define maxn 5000001
using namespace std;
int n,m,k,head[maxn],num,dis[maxn],s,t;
inline int qread() {
char c=getchar();int num=0,f=1;
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) num=num*10+c-'0';return num*f;
}
struct Edge {
int v,w,nxt;
}e[maxn];
struct node {
int x,y;
bool operator < (const node &a) const {return y>a.y;}
};
inline void ct(int u, int v, int w) {
e[++num].v=v;
e[num].w=w;
e[num].nxt=head[u];
head[u]=num;
}
priority_queue<node>q;
inline void dijkstra() {
memset(dis,0x3f,sizeof(dis));
dis[1+n*k]=0;q.push((node){1+n*k,0});
while(!q.empty()) {
int u=q.top().x,d=q.top().y;
q.pop();
if(d!=dis[u]) continue;
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(dis[v]>dis[u]+e[i].w) {
dis[v]=dis[u]+e[i].w;
q.push((node){v,dis[v]});
}
}
}
}
int main() {
n=qread(),m=qread(),k=qread();
for(int i=1,u,v,w;i<=m;++i) {
u=qread(),v=qread(),w=qread();
for(int j=0;j<=k;++j) {
ct(u+j*n,v+j*n,w);
ct(v+j*n,u+j*n,w);
if(j) {
ct(u+j*n,v+(j-1)*n,0);
ct(v+j*n,u+(j-1)*n,0);
}
}
}
dijkstra();
int zrj=0x7fffffff;
for(int i=0;i<=k;++i) zrj=min(zrj,dis[n+i*n]);
printf("%d\n",zrj);
return 0;
}

洛谷P2939 [USACO09FEB]改造路Revamping Trails的更多相关文章

  1. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解

    P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...

  2. 洛谷 P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  3. 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)

    题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...

  4. P2939 [USACO09FEB]改造路Revamping Trails

    P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...

  5. LUOGU P2939 [USACO09FEB]改造路Revamping Trails

    题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...

  6. 【luogu P2939 [USACO09FEB]改造路Revamping Trails】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2939 本来说是双倍经验题,跟飞行路线一样的,结果我飞行路线拿deque优化SPFA过了这里过不了了. 所以多 ...

  7. P2939 [USACO09FEB]改造路Revamping Trails(分层图最短路)

    传送门 完了我好像连分层图最短路都不会了……果然还是太菜了…… 具体来说就是记录一个步数表示免费了几条边,在dijkstra的时候以步数为第一关键字,距离为第二关键字.枚举边的时候分别枚举免不免费下一 ...

  8. [USACO09FEB] 改造路Revamping Trails | [JLOI2011] 飞行路线

    题目链接: 改造路 飞行路线 其实这两道题基本上是一样的,就是分层图的套路题. 为什么是分层图呢?首先,我们的选择次数比较少,可以把这几层的图建出来而不会爆空间.然后因为选择一个边权为0的路线之后我们 ...

  9. 分层图【p2939】[USACO09FEB]改造路Revamping Trails

    Description 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小 ...

随机推荐

  1. ZOJ 3329 One Person Game:期望dp【关于一个点成环——分离系数】

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意: 给你面数分别为k1,k2,k3的三个骰子. 给定a ...

  2. Struts2 输入校验 第四弹

    ActionSupport 里面有一个validate.可以重写里面你的方法. 校验执行流程: 1)首先进行类型转化 2)然后进行输入校验(执行validate方法) 3)如果在上述过程中出现了任何错 ...

  3. hdu 1042 N!(大数)

    题意:求n!(0 ≤ N ≤ 10000) 思路:大数,用数组存储 1.首先要考虑数据N!的位数,因为最大是10000!,可以计算一下大概是5+9000*4+900*3+90*2+10*1=38865 ...

  4. struts2框架xml验证

    struts2验证分为3步: 1.获取需要验证的信息,使用同名属性,提供getter,setter方法.然后框架使用反射将值自动注入. 2.对信息进行验证,成功失败作出对应的选择. xml验证和手动验 ...

  5. visual studio code使用MSVC编译C++

    环境 OS::Microsoft Windows [Version 10.0.17134.285] x64 VSC:Version:1.27.2 (system setup) VS:2017 心血来潮 ...

  6. Spring笔记04(DI(给属性赋值),自动装配(autowire))

    给不同数据类型注入值: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="h ...

  7. Spring笔记02(3种加载配置文件的方式)

    1.不使用Spring的实例: 01.Animal接口对应的代码: package cn.pb.dao; /** * 动物接口 */ public interface Animal { //吃饭 St ...

  8. 【C++基础】浅拷贝和深拷贝

    简单理解: 对于一块内存,浅拷贝只是增加了一个指针,这样两个变量都指向这块内存,二深拷贝则是先开辟一块同等大小的新内存区,将待拷贝内存的内容复制过来,再赋予一个指向新内存的指针.区别在于:浅拷贝会造成 ...

  9. Python定时任务-schedule vs. Celery vs. APScheduler

    在Python开发过程中我们经常需要执行定时任务,而此类任务我们通常有如下选项: 自己造轮子 使用schedule库 使用Celery定时任务 使用APScheduler 自己造轮子实现,最大的优势就 ...

  10. django 自定义日志配置

    如果不想使用 python 的 dictConfig 格式来配置 logger,可以制定自己的配置架构. LOGGING_CONFIG 配置定义了用来配置 django logger 的可调用函数,默 ...