递归:

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

1. 必须有一个明确的结束条件;

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少;

3.递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

age(5)=age(4)+2
age(4)=age(3)+2
age(3)=age(2)+2
age(2)=age(1)+2
age(1)=10
n==1 age(n)=10
n>1 age(n)=age(n-1)+2

递归方法实现

def age(n):
if n==1:
return 10
else:
return age(n-1)+2 print(age(5))
---->18

 

递归函数格式

def func(n):
if n == 10:
return
print('from func')
func(n-1) func(10)

递归效率低,python3中栈默认次数为1000次,可以设栈的次数

import sys
sys.setrecursionlimit(10000)

递归函数应用

用二分法查看整型在不在data列表中

data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35]

程序如下

data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35]
def search(num,data):
print(data)
mid_index=int(len(data)/2)
mid_value=data[mid_index]
if num>mid_value: #num在data中值右侧
data=data[mid_index:]
return search(num,data)
elif num<mid_value: # num在data中值右侧
data=data[:mid_index]
return search(num, data)
else:
print("find it!") search(35,data)
--->[1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35]
[18, 20, 21, 22, 23, 30, 32, 33, 35]
[23, 30, 32, 33, 35]
[32, 33, 35]
[33, 35]
find it! search(3,data)
--->[1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35]
[1, 3, 6, 7, 9, 12, 14, 16, 17]
[1, 3, 6, 7]
[1, 3]
find it! search(19,data)
---->报错,一直在寻找19,查了1000次后栈满,所以报错

程序优化版

data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35]
def search(num,data):
print(data)
if len(data) > 1:
mid_index=int(len(data)/2)
mid_value=data[mid_index]
if num>mid_value: #num在data中值右侧
data=data[mid_index:]
return search(num,data)
elif num<mid_value: # num在data中值右侧
data=data[:mid_index]
return search(num, data)
else:
print("find it!")
else:
if data[0]==num:
print("find it!")
else:
print(num,"不在data列表中") search(19,data)
---->[1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35]
[18, 20, 21, 22, 23, 30, 32, 33, 35]
[18, 20, 21, 22]
[18, 20]
[18]
19 不在data列表中

  

函数式编程:

1.不会修改外部状态

2.函数式编程语言非常精简,可读性比较差

3.模仿数学意义上的函数编程

高阶函数:map , reduce ,filter,sorted

能把函数作为参数传入,这样的函数就称为高阶函数。

匿名函数:  lambda

面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

函数式编程:是使用一系列函数去解决问题,函数式编程就是根据编程的范式来,得出想要的结果,只要是输入时确定的,输出就是确定的。

python(22)- 递归和函数式编程的更多相关文章

  1. Python全栈开发之3、深浅拷贝、变量和函数、递归、函数式编程、内置函数

    一.深浅拷贝 1.数字和字符串 对于 数字 和 字符串 而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. import copy # 定义变量 数字.字符串 # n1 = 123 n1 ...

  2. Python学习笔记八:文件操作(续),文件编码与解码,函数,递归,函数式编程介绍,高阶函数

    文件操作(续) 获得文件句柄位置,f.tell(),从0开始,按字符数计数 f.read(5),读取5个字符 返回文件句柄到某位置,f.seek(0) 文件在编辑过程中改变编码,f.detech() ...

  3. Python3学习之路~3.2 递归、函数式编程、高阶函数、匿名函数、嵌套函数

    1 递归 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. def calc(n): print(n) if int(n / 2) == 0: return n r ...

  4. Python修饰器的函数式编程

    Python的修饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都 ...

  5. Python修饰器的函数式编程(转)

    From:http://coolshell.cn/articles/11265.html 作者:陈皓 Python的修饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Desi ...

  6. Python3基础(3)集合、文件操作、字符转编码、函数、全局/局部变量、递归、函数式编程、高阶函数

    ---------------个人学习笔记--------------- ----------------本文作者吴疆-------------- ------点击此处链接至博客园原文------ 1 ...

  7. python【6】-函数式编程

    一.高阶函数 map,reduce 1.map() 函数接收两个参数,一个是函数,一个是序列,map将传入的函数依次作用到序列的每个元素,并把结果作为新的list返回. def f(x): retur ...

  8. Python入门笔记(21):Python函数(4):关于函数式编程的内建函数

    一.关于函数式编程的内建函数 apply()逐渐被舍弃,这里不讨论 1.filter() #filter(func,seq) """纯Python描述filter函数&q ...

  9. 小白的Python之路 day3 函数式编程,高阶函数

    函数式编程介绍   函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计.函数就是面向过程的 ...

随机推荐

  1. 衡量线性回归法的指标MSE, RMSE,MAE和R Square

    衡量线性回归法的指标:MSE, RMSE和MAE 举个栗子: 对于简单线性回归,目标是找到a,b 使得尽可能小 其实相当于是对训练数据集而言的,即 当我们找到a,b后,对于测试数据集而言 ,理所当然, ...

  2. 九度oj 题目1355:扑克牌顺子

    题目描述: LL今天心情特别好,因为他去买了一副扑克牌,发现里面居然有2个大王,2个小王(一副牌原本是54张^_^)...他随机从中抽出了5张牌,想测测自己的手气,看看能不能抽到顺子,如果抽到的话,他 ...

  3. 【Luogu】P2569股票交易(单调队列优化DP)

    题目链接 首先这题可以肯定的是朴素DP秒出.然后单调队列优化因为没接触过所以不会emmm 而且脑补没补出来 坐等四月省选倒数第一emmm 心态爆炸,偷懒放题解链接 #include<cstdio ...

  4. HDU——2602Bone Collector(01背包)

    Bone Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  5. HDU——1393Weird Clock(水题,注意题意)

    Weird Clock Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  6. 数据库操作——pymysql模块

    一 import pymysql conn=pymysql.connect( host='localhost', port=3306, user='zuo', password=', database ...

  7. d3 比例尺

    .domain([, ]) 定义域范围 .range([, ]) 值域范围 var scale = d3.scale.linear() .domain([, ]) .range([, ]); 将100 ...

  8. 部分转 Java读取ini配置

    转自: http://www.cnblogs.com/Jermaine/archive/2010/10/24/1859673.html 读取ini的配置的格式如下: [section1] key1=v ...

  9. Django ConnectionAbortedError WinError 10053 错误

    因为ajax默认是异步提交,可是有时候我们会发现,本来要求请求马上出现,可是异步会导致后面突然再执行,这样就出问题了. (1)添加这样一段代码 $.ajaxSetup({ async : false ...

  10. hdu 1565&hdu 1569(网络流--最小点权值覆盖)

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...