【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
【BZOJ4710】[Jsoi2011]分特产
Description
Input
Output
Sample Input
1 3 3 5
Sample Output
题解:组合数还是不够熟练啊~
显然要容斥,设f[i]表示将所有物品都只分给i个人(不一定全都分到)的方案数,那么分开考虑每个物品,如果物品j的数量为v,那么方案数等价于将v个物品分成i个子集的方案数,即f[i]*=C(v+i-1,i-1)。
求出了f数组,考虑容斥,ans=至少0人未分到-至少1人未分到+至少2人未分到...
于是枚举有k个人未分到,ans+=(-1)^k*C(n,k)*f[n-k]。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1000000007;
const int maxn=1000010;
int n,m,tot;
ll ans;
ll jc[maxn],jcc[maxn],ine[maxn],f[maxn];
int v[maxn];
ll c(int a,int b)
{
return jc[a]*jcc[b]%P*jcc[a-b]%P;
}
ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%P;
x=x*x%P,y>>=1;
}
return z;
}
int main()
{
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=m;i++) scanf("%d",&v[i]),tot+=v[i];
if(n>tot)
{
printf("0");
return 0;
}
ine[1]=ine[0]=jc[1]=jc[0]=jcc[1]=jcc[0]=1;
for(i=2;i<=tot;i++) ine[i]=(P-(P/i)*ine[P%i])%P,jc[i]=jc[i-1]*i%P,jcc[i]=jcc[i-1]*ine[i]%P;
for(i=1;i<=n;i++) f[i]=1;
for(i=1;i<=m;i++) for(j=1;j<=n;j++) f[j]=f[j]*c(v[i]+j-1,j-1)%P;
for(i=0;i<n;i++) ans=(ans+((i&1)?-1:1)*c(n,i)%P*f[n-i]%P+P)%P;
printf("%lld\n",ans%P);
return 0;
}//2 2 1 2
【BZOJ4710】[Jsoi2011]分特产 组合数+容斥的更多相关文章
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 【BZOJ4710】[JSOI2011]分特产(容斥)
[BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- luogu 5505 [JSOI2011]分特产 广义容斥
共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数. 令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g ...
- Bzoj4710 [Jsoi2011]分特产
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 96 Solved: 62[Submit][Status][Discuss] Description ...
- BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- 2019.02.09 bzoj4710: [Jsoi2011]分特产(容斥原理)
传送门 题意简述:有nnn个人,mmm种物品,给出每种物品的数量aia_iai,问每个人至少分得一个物品的方案数(n,m,每种物品数≤1000n,m,每种物品数\le1000n,m,每种物品数≤10 ...
随机推荐
- AC日记——【模板】KMP字符串匹配 洛谷 3375
题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[ ...
- openshift scc解析
SCC使用UserID,FsGroupID以及supplemental group ID和SELinux label等策略,通过校验Pod定义的ID是否在有效范围内来限制pod的权限.如果校验失败,则 ...
- Windows 远程桌面文件传输的方法
实现电脑的远程连接以后,很多时候会需要进行主机间的文件传输,这个时候就可以用系统自带的远程连接里的磁盘映射来完成,详细如下: 远程桌面程序内置了映射磁盘的功能,通过这个功能可以实现远程登录服务器时自动 ...
- WebStorm添加多个项目到当前工程目录
File-> Settings -> Directories -> Add Content Root,选择你要加入的Project 点击OK -> Apply -> OK ...
- 计算机视觉和模式识别领域SCI期刊介绍
原帖地址: http://blog.sciencenet.cn/blog-370458-750306.html 关于计算机视觉和模式识别领域的期刊并不是很多,下面我收集了一些该领域的代表性期刊,并介绍 ...
- GIS可视化——热点图
一.简介 SuperMap iClient for JavaScript提供了热点图(HeatMapLayer),用于渲染数据衰减趋势.颜色渐变的效果. 原理:在客户端直接渲染的栅格图,热点图的渲染需 ...
- jQuery ajax 获取信息展示在“下拉列表”中
<link href="${ctxStatic}/jquery-select2/4.0.3/select2.min.css" rel="stylesheet&quo ...
- PGM图片格式与代码
这两天在搞神经网络,里面的一个人脸数据库的图片格式是PGM,事实上之前早就知道了这个图片格式,可是没去深究这个图片格式的数据究竟是什么安排的.搜索了下百度百科,发现介绍的真是简单,以下就自己来系统地整 ...
- linux 文件查找实用技巧
1.tail catalina.out -n 100000 | grep -niR com.uujimu.utils.ArticleContentReplace.replacNumToA 查找内容,并 ...
- 手把手教你画AndroidK线分时图及指标
先废话一下:来到公司之前.项目是由外包公司做的,面试初,没有接触过分时图k线这块,认为好难,我能搞定不.可是一段时间之后,发现之前做的那是一片稀烂,可是这货是主功能啊.迟早的自己操刀,痛下决心,开搞, ...