ML | Naive Bayes
what's xxx
In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features.
Naive Bayes is a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate preprocessing, it is competitive in this domain with more advanced methods including support vector machines.
In simple terms, a naive Bayes classifier assumes that the value of a particular feature is unrelated to the presence or absence of any other feature, given the class variable.
An advantage of naive Bayes is that it only requires a small amount of training data to estimate the parameters (means and variances of the variables) necessary for classification. Because independent variables are assumed, only the variances of the variables for each class need to be determined and not the entire covariance matrix.
Abstractly, the probability model for a classifier is a conditional model
$p(C \vert F_1,\dots,F_n)\,$
over a dependent class variable C with a small number of outcomes or classes, conditional on several feature variables $F_1$ through $F_n$. The problem is that if the number of features n is large or if a feature can take on a large number of values, then basing such a model on probability tables is infeasible. We therefore reformulate the model to make it more tractable.
Using Bayes' theorem, this can be written
$p(C \vert F_1,\dots,F_n) = \frac{p(C) \ p(F_1,\dots,F_n\vert C)}{p(F_1,\dots,F_n)}. \,$
In plain English, using Bayesian Probability terminology, the above equation can be written as
$\mbox{posterior} = \frac{\mbox{prior} \times \mbox{likelihood}}{\mbox{evidence}}. \,$
$\begin{align}
p(C, F_1, \dots, F_n) & = p(C) \ p(F_1,\dots,F_n\vert C) \\
& = p(C) \ p(F_1\vert C) \ p(F_2,\dots,F_n\vert C, F_1) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ p(F_3,\dots,F_n\vert C, F_1, F_2) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ p(F_3\vert C, F_1, F_2) \ p(F_4,\dots,F_n\vert C, F_1, F_2, F_3) \\
& = p(C) \ p(F_1\vert C) \ p(F_2\vert C, F_1) \ \dots p(F_n\vert C, F_1, F_2, F_3,\dots,F_{n-1})
\end{align}$
Now the "naive" conditional independence assumptions come into play: assume that each feature $F_i$ is conditionally independent of every other feature $F_j$ for $j\neq i$ given the category C. This means that
$p(F_i \vert C, F_j) = p(F_i \vert C)\,,
p(F_i \vert C, F_j,F_k) = p(F_i \vert C)\,,
p(F_i \vert C, F_j,F_k,F_l) = p(F_i \vert C)\,,$
and so on, for $i\ne j,k,l$. Thus, the joint model can be expressed as
$\begin{align}
p(C \vert F_1, \dots, F_n) & \varpropto p(C, F_1, \dots, F_n) \\
& \varpropto p(C) \ p(F_1\vert C) \ p(F_2\vert C) \ p(F_3\vert C) \ \cdots \\
& \varpropto p(C) \prod_{i=1}^n p(F_i \vert C)\,.
\end{align}$
This means that under the above independence assumptions, the conditional distribution over the class variable C is:
$p(C \vert F_1,\dots,F_n) = \frac{1}{Z} p(C) \prod_{i=1}^n p(F_i \vert C)$
where the evidence $Z = p(F_1, \dots, F_n)$ is a scaling factor dependent only on $F_1,\dots,F_n$, that is, a constant if the values of the feature variables are known.
One common rule is to pick the hypothesis that is most probable; this is known as the maximum a posteriori or MAP decision rule. The corresponding classifier, a Bayes classifier, is the function $\mathrm{classify}$ defined as follows:
$\mathrm{classify}(f_1,\dots,f_n) = \underset{c}{\operatorname{argmax}} \ p(C=c) \displaystyle\prod_{i=1}^n p(F_i=f_i\vert C=c).$
All model parameters (i.e., class priors and feature probability distributions) can be approximated with relative frequencies from the training set. These are maximum likelihood estimates of the probabilities. A class' prior may be calculated by assuming equiprobable classes (i.e., priors = 1 / (number of classes)), or by calculating an estimate for the class probability from the training set (i.e., (prior for a given class) = (number of samples in the class) / (total number of samples)). To estimate the parameters for a feature's distribution, one must assume a distribution or generate nonparametric models for the features from the training set.
Algorithm
1. 计算先验概率,class priors and feature probability distributions; $p(C)$和$Z = p(F_1, \dots, F_n)$
2. 不同特征要假设一个概率分布;$p(F_i \vert C)$;
When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution.
Another common technique for handling continuous values is to use binning to discretize the feature values, to obtain a new set of Bernoulli-distributed features.
In general, the distribution method is a better choice if there is a small amount of training data, or if the precise distribution of the data is known. The discretization method tends to do better if there is a large amount of training data because it will learn to fit the distribution of the data. Since naive Bayes is typically used when a large amount of data is available (as more computationally expensive models can generally achieve better accuracy), the discretization method is generally preferred over the distribution method.
3. 计算成为每个类的概率,取概率最大的类;
ML | Naive Bayes的更多相关文章
- [ML] Naive Bayes for Text Classification
TF-IDF Algorithm From http://www.ruanyifeng.com/blog/2013/03/tf-idf.html Chapter 1, 知道了"词频" ...
- [ML] Naive Bayes for email classification
20 Newsgroups (Original) Author: Jeffrey H 1. Introduction This is only a test report for naive baye ...
- [Scikit-learn] 1.9 Naive Bayes
Ref: http://scikit-learn.org/stable/modules/naive_bayes.html 1.9.1. Gaussian Naive Bayes 原理可参考:统计学习笔 ...
- Naive Bayes Theorem and Application - Theorem
Naive Bayes Theorm And Application - Theorem Naive Bayes model: 1. Naive Bayes model 2. model: discr ...
- 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...
- MLLib实践Naive Bayes
引言 本文基于Spark (1.5.0) ml库提供的pipeline完整地实践一次文本分类.pipeline将串联单词分割(tokenize).单词频数统计(TF),特征向量计算(TF-IDF),朴 ...
- 基于Naive Bayes算法的文本分类
理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- [Machine Learning & Algorithm] 朴素贝叶斯算法(Naive Bayes)
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子 ...
随机推荐
- 通过SWD J-Link使用J-Link RTT Viewer来查看打印日志
详细的说明可以参考:https://www.cnblogs.com/iini/p/9279618.html sdk版本: 15.2.0 例程目录:\nRF5_SDK_15.2.0_9412b96\ex ...
- Hard problem CodeForces - 706C
Time limit1000 ms Memory limit262144 kB 题目: Vasiliy is fond of solving different tasks. Today he fou ...
- HUD:2853-Assignment(KM算法+hash)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=2853 Assignment Time Limit: 2000/1000 MS (Java/Others) ...
- poj 3614 奶牛美容问题 优先队列
题意:每头奶牛需要涂抹防晒霜,其中有效的范围 min~max ,现在有L种防晒霜,每种防晒霜的指数为 f 瓶数为 l,问多少只奶牛可以涂上合适的防晒霜?思路: 优先队列+贪心 当奶牛的 min< ...
- BZOJ 4369: [IOI2015]teams分组
把一个人看成二维平面上的一个点,把一个K[i]看成左上角为(0,+max),右下角为(K[i],K[i])的一个矩阵,那么可以很好地描述人对于询问是否合法(我也不知道他怎么想到这东西的) 然后把一组询 ...
- python - 数据驱动测试 - ddt
# -*- coding:utf-8 -*- ''' @project: jiaxy @author: Jimmy @file: study_ddt.py @ide: PyCharm Communit ...
- activemq的安装启动
Activemq安装和启动 官网:http://activemq.apache.org/ 安装启动: $ tar -zxvf apache-activemq-5.11.1-bin.tar.gz ...
- Swift 3:新的访问控制fileprivate和open
在swift 3中新增加了两种访问控制权限 fileprivate和 open.下面将对这两种新增访问控制做详细介绍. fileprivate 在原有的swift中的 private其实并不是真正的私 ...
- CS231n笔记 Lecture 1 Introduction
主题有关 这一讲主要是介绍性质的,虽然大多数概念以前听说过,但还是在他们的介绍中让我有如下一些认识,所谓温故而知新,不无道理: IMAGENET Feifei Li的团队首先爬取.标注了IMAGENE ...
- 【Luogu】P2486染色(树链剖分)
题目链接 线段树维护左端颜色,右端颜色,颜色段数量. 合并的时候看左子树的右端颜色是不是等于右子树的左端颜色,如果等于那么颜色段数量要-1S 然后在树剖跳链的时候搞同样的操作qwq 然后就没有然后了 ...