题意:方格取数,如果取了相邻的数,那么要付出一定代价。(代价为2*(X&Y))(开始用费用流,敲升级版3820,跪。。。)

建图:  对于相邻问题,经典方法:奇偶建立二分图。对于相邻两点连边2*(X&Y),源->X连边,Y->汇连边,权值w为点权。

ans=总点权-最小割:如果割边是源->X,表示x不要选(是割边,必然价值在路径上最小),若割边是Y-汇点,同理;若割边是X->Y,则表示选Y点且选X点, 割为w( 2*(X&Y) )。

自己的确还没有理解其本质精妙所在。不知何以然也。(开始多敲多了几个else一直跪!)

#include<iostream>
#include<queue>
#include<cstdio>
#include<cstring>
#include<set>
#include<vector>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxv=2550,maxe=20000;
int nume=0;int head[maxv];int e[maxe][3];
void inline adde(int i,int j,int c)
{
e[nume][0]=j;e[nume][1]=head[i];head[i]=nume;
e[nume++][2]=c;
e[nume][0]=i;e[nume][1]=head[j];head[j]=nume;
e[nume++][2]=0;
}
int ss,tt,n,m,k;
int vis[maxv];int lev[maxv];
bool bfs()
{
for(int i=0;i<maxv;i++)
vis[i]=lev[i]=0;
queue<int>q;
q.push(ss);
vis[ss]=1;
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(!vis[v]&&e[i][2]>0)
{
lev[v]=lev[cur]+1;
vis[v]=1;
q.push(v);
}
}
}
return vis[tt];
}
int dfs(int u,int minf)
{
if(u==tt||minf==0)return minf;
int sumf=0,f;
for(int i=head[u];i!=-1&&minf;i=e[i][1])
{
int v=e[i][0];
if(lev[v]==lev[u]+1&&e[i][2]>0)
{
f=dfs(v,minf<e[i][2]?minf:e[i][2]);
e[i][2]-=f;e[i^1][2]+=f;
sumf+=f;minf-=f;
}
}
if(!sumf) lev[u]=-1;
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())sum+=dfs(ss,inf);
return sum;
};
int mapp[52][52];int must[maxv];int sums=0;
void read_build()
{
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
scanf("%d",&mapp[i][j]);
sums+=mapp[i][j];
}
int aa,bb;
for(int i=0;i<k;i++)
{
scanf("%d%d",&aa,&bb);
must[(aa-1)*m+bb-1]=1;
}
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
{
if((i+j)%2==0)
{
if(must[i*m+j])
adde(ss,i*m+j,inf);
else
adde(ss,i*m+j,mapp[i][j]);
if(i-1>=0)
adde(i*m+j,(i-1)*m+j,2*(mapp[i][j]&mapp[i-1][j]));
if(i+1<n)
adde(i*m+j,(i+1)*m+j,2*(mapp[i][j]&mapp[i+1][j]));
if(j-1>=0)
adde(i*m+j,i*m+j-1,2*(mapp[i][j]&mapp[i][j-1]));
if(j+1<m)
adde(i*m+j,i*m+j+1,2*(mapp[i][j]&mapp[i][j+1]));
}
else
{
if(must[i*m+j])
adde(i*m+j,tt,inf);
else
adde(i*m+j,tt,mapp[i][j]);
}
}
/* for(int i=0;i<=tt;i++)
for(int j=head[i];j!=-1;j=e[j][1])
{
if(j%2==0)
printf("%d->%d:%d\n",i,e[j][0],e[j][2]);
}*/
}
void init()
{
nume=0;sums=0;
ss=n*m+2;tt=ss+1;
for(int i=0;i<=tt;i++)
{
head[i]=-1;
must[i]=0;
}
}
int main()
{
while(scanf("%d%d%d",&n,&m,&k)!=EOF)
{
init();
read_build();
int ans;
ans=sums-dinic();
printf("%d\n",ans);
}
return 0;
}

hdu 3657 最小割的活用 / 奇偶方格取数类经典题 /最小割的更多相关文章

  1. hdu 4859 最大点权独立集的变形(方格取数的变形)

    /*刚开始不会写,最大点权独立集神马都不知道,在潘神的指导下终于做出来,灰常感谢ps: 和方格取数差不多奇偶建图,对于D必割点权为0,对于.必然不割点权为inf.然后和方格取数差不多的建图 .--.| ...

  2. P2774 方格取数问题 网络最大流 割

    P2774 方格取数问题:https://www.luogu.org/problemnew/show/P2774 题意: 给定一个矩阵,取出不相邻的数字,使得数字的和最大. 思路: 可以把方格分成两个 ...

  3. HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. hdu 3657 最大点权独立集变形(方格取数的变形最小割,对于最小割建图很好的题)

    转载:http://blog.csdn.net/cold__v__moon/article/details/7924269 /* 这道题和方格取数2相似,是在方格取数2的基础上的变形. 方格取数2解法 ...

  5. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  6. 【BZOJ1475】方格取数 [最小割]

    方格取数 Time Limit: 5 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 在一个n*n的方格里,每个格子里都有一 ...

  7. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  8. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  9. [BZOJ1475]方格取数 网络流 最小割

    1475: 方格取数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 512[Submit][Status][Discuss] ...

随机推荐

  1. B1061 判断题 (15分)

    B1061 判断题 (15分) 判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分. 输入格式: 输入在第一行给出两个不超过 100 的正整数 N 和 M,分别是学生人 ...

  2. Android学习笔记之-----讯飞语音识别实例化RecognizerDialog参数出现错误的解决方法

    本人也是个小菜鸟,在做语音识别时也遇到了这个问题,空指针一直报错,app程序停止运行. 在网上搜了半天在这个帖子里找到了解决方法:http://bbs.xfyun.cn/forum.php?mo .. ...

  3. Oracle数据库迁移--->从Windows到Linux

    I did a practice to migrate the oracle database from windows to linux operation system. The followin ...

  4. Beamer模板

    普通模板: \documentclass[UTF-8]{beamer} \usepackage{ctex} \usetheme{CambridgeUS} \begin{document} \secti ...

  5. windows下使用grunt

    grunt官网:http://www.gruntjs.org/ 一.安装grunt 先安装node,在http://www.nodejs.org/可以下载安装包直接安装.在命令行下运行: npm in ...

  6. 微信小程序-----校园头条详细开发之首页

    1.首页展示功能的实现 1.1  结构 1.2 代码实现 1.2.1  界面的设计这里就不多说了,样式都是我自己写的,还有就是页面的跳转,看详细代码 var app = getApp() Page({ ...

  7. python - 接口自动化测试 - GetLog - 日志类封装

    # -*- coding:utf-8 -*- ''' @project: ApiAutoTest @author: Jimmy @file: get_logger.py @ide: PyCharm C ...

  8. PAT——乙级1018

    题目是 1018 锤子剪刀布 (20 point(s)) 大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图所示: 现给出两人的交锋记录,请统计双方的胜.平.负次数,并且给出双方分别出 ...

  9. POJ 3494 Largest Submatrix of All 1’s 单调队列||单调栈

    POJ 3494 Largest Submatrix of All 1’s Description Given a m-by-n (0,1)-matrix, of all its submatrice ...

  10. 【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

    题目描述 定义二元运算 opt 满足   现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c  你需要求出有多少对 (i, j) 使得 a_ ...