莫比乌斯反演

我不会推线性筛 留坑

bzoj4804的更多相关文章

  1. 【bzoj4804】欧拉心算 解题报告

    [bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...

  2. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  3. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  4. [BZOJ4804]欧拉心算

    题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...

  5. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  6. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  7. 【文文殿下】【BZOJ4804】欧拉心算

    题解 显然有 \(ans=\sum _{i=1} ^{n} \lfloor \frac{n}{i} \rfloor \sum _{d|i} \mu(d) \phi (\frac{i}{d})\) 前半 ...

  8. 【BZOJ4804】欧拉心算

    Description 给定数字\(n\)(\(n\le 10^7\)),求: \[ \sum_{i=1}^n\sum_{j=1}^n\varphi(\gcd(i,j)) \] ​ 多组数据输入,数据 ...

  9. 【bzoj4804】欧拉心算 莫比乌斯反演+莫比乌斯函数性质+线性筛

    Description 给出一个数字N 求\(\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(gcd(i,j))\) Input 第一行为一个正整数T,表示数据组数. 接下来T ...

随机推荐

  1. android客户端向服务器端验证登陆方法的实现1

    遇到的问题:一个条件查询与多个条件查询,所用到的方式不一样 参考文档: http://www.oschina.net/question/1160609_133366    mybatis多条件查询的一 ...

  2. 在CentOS 7上构建RAID5、LVM和SAMBAserver(5)——架设SAMBAserver

    在CentOS 7上构建RAID5.LVM和SAMBAserver(5)--架设SAMBAserver 6. 架设SAMBAserver 6.1. 预备 本节的任务是配置SAMBA服务,共享/home ...

  3. [GUIDE] How to Setup Ubuntu 16.04 LTS Xenial Xerus for Compiling Android ROMs

    With a new version of Ubuntu comes an update to my guide for setting up a build environment to compi ...

  4. RabbitMQ的工作模式

    简单模式: # #########################基于简单模式的 生产者 ######################### #!/usr/bin/env python import ...

  5. caffe搭建--caffe在invidia+cpu 酷睿2Q9300 + ubuntu16.04.2上面的安装和编译过程

    本文原创,转载请注明出处. ------------------------------------------------分割线-------------------------------- 概要 ...

  6. windows常用快捷键(转载)

    f1 显示当前程序或者windows的帮助内容. f2 当你选中一个文件的话,这意味着“重命名” f3 当你在桌面上的时候是打开“查找:所有文件” 对话框 f10或alt 激活当前程序的菜单栏 win ...

  7. 嵌入式流媒体音视频服务器EasyIPCamera中live555发送性能优化点

    EasyIPCamera流媒体服务器 今年EasyDarwin团队在给国内某最大的金融安防公司做技术咨询的时候,开发了一款适用于嵌入式IPCamera.NVR的RTSP流媒体服务器:EasyIPCam ...

  8. React深入源码--了解Redux用法之Provider

    在Redux中最核心的自然是组件,以及组件相关的事件与数据流方式.但是我们在Redux中并没有采用传统的方式在getInitialState()中去初始化数据,而是采用Provider统一处理,省去了 ...

  9. 在Qt Creator中创建C++工程并使用CMake构建项目

    创建完毕后,若电脑上没有安装CMake,则无法构建工程, 我用的是绿色版,官网下载地址:https://cmake.org/files/v3.10/cmake-3.10.1-win64-x64.zip ...

  10. contentprovider 实例

    Provider端 public class PersonProvider extends ContentProvider { //用来存放所有合法的Uri的容器 private static Uri ...