Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1731    Accepted Submission(s): 656

Problem Description
Let us define a sequence as below

F1=A
F2=B
Fn=C⋅Fn−2+D⋅Fn−1+⌊Pn⌋

Your job is simple, for each task, you should output Fn module 109+7.

 
Input
The first line has only one integer T, indicates the number of tasks.

Then, for the next T lines, each line consists of 6 integers, A , B, C, D, P, n.

1≤T≤200≤A,B,C,D≤1091≤P,n≤109

 
Sample Input
2
3 3 2 1 3 5
3 2 2 2 1 4
 
Sample Output
36
24
 
Source
 
 
 

cin>>n;
ll ans = ;
for(ll l = ,r;l <= n;l = r + ){
r = n / (n / l);
ans += (r - l + ) * (n / l);
}
cout<<ans<<endl;

除法分块模板

 
[p/n]是整除,一段内的值是相同的,他的整除值有sqrt(p)种。

因此可以将变量分块每块看作常量,对每一块使用矩阵快速幂。
 
 
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define MAX 10
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; ll p,q;
struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y)
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=x.a[i][k]*y.a[k][j]%MOD;
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qMod(ll x,mat a,ll n)
{
mat t;
t.a[][]=q;t.a[][]=p;t.a[][]=x;
t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;
while(n){
if(n&) a=t*a;
n>>=;
t=t*t;
}
return a;
}
int main()
{
int t,i;
ll a1,a2,x,n;
scanf("%d",&t);
while(t--){
scanf("%lld%lld%lld%lld%lld%lld",&a1,&a2,&p,&q,&x,&n);
if(n==) printf("%lld\n",a1);
else if(n==) printf("%lld\n",a2);
else{
mat a;
a.a[][]=a2;a.a[][]=;a.a[][]=;
a.a[][]=a1;a.a[][]=;a.a[][]=;
a.a[][]=;a.a[][]=;a.a[][]=;
if(x>=n){
for(i=;i<=n;i=x/(x/i)+){
a=qMod(x/i,a,min(n,x/(x/i))-i+);
}
}
else{
for(i=;i<=x;i=x/(x/i)+){
a=qMod(x/i,a,x/(x/i)-i+);
}
a=qMod(,a,n-max(x,2ll));
}
printf("%lld\n",a.a[][]);
}
}
return ;
}

HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)的更多相关文章

  1. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

  2. HDU - 6395 Sequence (整除分块+矩阵快速幂)

    定义数列: $\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_ ...

  3. HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution ...

  4. [hdu-6395]Sequence 分块+矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时  加的下取整的数随 ...

  5. poj2778DNA Sequence (AC自动机+矩阵快速幂)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory ...

  6. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  7. hdu6395 Sequence(分段矩阵快速幂)

    Sequence 题目传送门 解题思路 可以比较容易的推出矩阵方程,但是由于p/i向下取整的值在变,所以要根据p/i的变化将矩阵分段快速幂.p/i一共有sqrt(p)种结果,所以最多可以分为sqrt( ...

  8. HDU 6395 Sequence(分段矩阵快速幂)题解

    题意: 已知\(A,B,C,D,P,n\)以及 \[\left\{ \begin{aligned} & F_1 = A \\ & F_2 = B\\ & F_n = C*F_{ ...

  9. Sequence( 分块+矩阵快速幂 )

    题目链接 #include<bits/stdc++.h> using namespace std; #define e exp(1) #define pi acos(-1) #define ...

随机推荐

  1. 九度OJ 1156:谁是你的潜在朋友 (并查集)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5802 解决:2593 题目描述: "臭味相投"--这是我们描述朋友时喜欢用的词汇.两个人是朋友通常意味着他们存在着许多 ...

  2. 九度OJ 1082:代理服务器 (DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1871 解决:574 题目描述: 使用代理服务器能够在一定程度上隐藏客户端信息,从而保护用户在互联网上的隐私.我们知道n个代理服务器的IP地 ...

  3. imagick图片压缩。

    选择一个合适的图片处理扩展包. 常见的扩展如GD,imagick,Gmagick. 老古董的GD丢掉吧,效率很低,而且压缩的图片体积很大=.=   imagick是个不错的选择,在PHP的图片处理扩展 ...

  4. Java for LeetCode 137 Single Number II

    Given an array of integers, every element appears three times except for one. Find that single one. ...

  5. mac下编译FFmpeg-Android

    参考: [史上最傻瓜的]mac下编译FFmpeg-Android http://blog.csdn.net/ashqal/article/details/9381037

  6. 【Leetcode-easy】Roman to Integer

    罗马数字转化为整数 * 1.基本数字 Ⅰ.X .C 中的任何一个.自身连用构成数目.或者放在大数的右边连用构成数目.都不能超过三个:放在大数的左边只能用一个: * 2.不能把基本数字 V .L .D ...

  7. Java多线程系列 基础篇04 线程中断

    1. 中断线程 中断可以理解为线程的一个标志位属性,它表示一个运行中的线程是否被其他线程进行了中断操作,其他线程通过调用该线程的interrupt()方法对其进行中断操作,线程通过检查自身是否被中断来 ...

  8. [LeetCode] 698. Partition to K Equal Sum Subsets

    Problem Given an array of integers nums and a positive integer k, find whether it's possible to divi ...

  9. Ubuntu编译Android使用的FFmpeg

    本文介绍在Ubuntu平台编译FFmpeg库,用于Android使用.前提需要配置好NDK的环境.可以参考之前的文章Android NDK环境搭建. 下载FFmpeg 在官网下载FFmpeg源码,ht ...

  10. hadoop —— MapReduce例子 (数据排序)

    参考:http://eric-gcm.iteye.com/blog/1807468 file1.txt: 2 32 654 32 15 756 65223 file2.txt: 5956 22 650 ...