Sequence

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1731    Accepted Submission(s): 656

Problem Description
Let us define a sequence as below

F1=A
F2=B
Fn=C⋅Fn−2+D⋅Fn−1+⌊Pn⌋

Your job is simple, for each task, you should output Fn module 109+7.

 
Input
The first line has only one integer T, indicates the number of tasks.

Then, for the next T lines, each line consists of 6 integers, A , B, C, D, P, n.

1≤T≤200≤A,B,C,D≤1091≤P,n≤109

 
Sample Input
2
3 3 2 1 3 5
3 2 2 2 1 4
 
Sample Output
36
24
 
Source
 
 
 

cin>>n;
ll ans = ;
for(ll l = ,r;l <= n;l = r + ){
r = n / (n / l);
ans += (r - l + ) * (n / l);
}
cout<<ans<<endl;

除法分块模板

 
[p/n]是整除,一段内的值是相同的,他的整除值有sqrt(p)种。

因此可以将变量分块每块看作常量,对每一块使用矩阵快速幂。
 
 
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define MAX 10
#define INF 0x3f3f3f3f
#define MOD 1000000007
using namespace std;
typedef long long ll; ll p,q;
struct mat{
ll a[MAX][MAX];
}; mat operator *(mat x,mat y)
{
mat ans;
memset(ans.a,,sizeof(ans.a));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
ans.a[i][j]+=x.a[i][k]*y.a[k][j]%MOD;
ans.a[i][j]%=MOD;
}
}
}
return ans;
}
mat qMod(ll x,mat a,ll n)
{
mat t;
t.a[][]=q;t.a[][]=p;t.a[][]=x;
t.a[][]=;t.a[][]=;t.a[][]=;
t.a[][]=;t.a[][]=;t.a[][]=;
while(n){
if(n&) a=t*a;
n>>=;
t=t*t;
}
return a;
}
int main()
{
int t,i;
ll a1,a2,x,n;
scanf("%d",&t);
while(t--){
scanf("%lld%lld%lld%lld%lld%lld",&a1,&a2,&p,&q,&x,&n);
if(n==) printf("%lld\n",a1);
else if(n==) printf("%lld\n",a2);
else{
mat a;
a.a[][]=a2;a.a[][]=;a.a[][]=;
a.a[][]=a1;a.a[][]=;a.a[][]=;
a.a[][]=;a.a[][]=;a.a[][]=;
if(x>=n){
for(i=;i<=n;i=x/(x/i)+){
a=qMod(x/i,a,min(n,x/(x/i))-i+);
}
}
else{
for(i=;i<=x;i=x/(x/i)+){
a=qMod(x/i,a,x/(x/i)-i+);
}
a=qMod(,a,n-max(x,2ll));
}
printf("%lld\n",a.a[][]);
}
}
return ;
}

HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)的更多相关文章

  1. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

  2. HDU - 6395 Sequence (整除分块+矩阵快速幂)

    定义数列: $\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_ ...

  3. HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution ...

  4. [hdu-6395]Sequence 分块+矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时  加的下取整的数随 ...

  5. poj2778DNA Sequence (AC自动机+矩阵快速幂)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud DNA Sequence Time Limit: 1000MS   Memory ...

  6. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  7. hdu6395 Sequence(分段矩阵快速幂)

    Sequence 题目传送门 解题思路 可以比较容易的推出矩阵方程,但是由于p/i向下取整的值在变,所以要根据p/i的变化将矩阵分段快速幂.p/i一共有sqrt(p)种结果,所以最多可以分为sqrt( ...

  8. HDU 6395 Sequence(分段矩阵快速幂)题解

    题意: 已知\(A,B,C,D,P,n\)以及 \[\left\{ \begin{aligned} & F_1 = A \\ & F_2 = B\\ & F_n = C*F_{ ...

  9. Sequence( 分块+矩阵快速幂 )

    题目链接 #include<bits/stdc++.h> using namespace std; #define e exp(1) #define pi acos(-1) #define ...

随机推荐

  1. ridge regression 无惩罚,导致预测结果空间过大而无实用价值

    [ biased regression methods to reduce variance---通过偏回归来减小方差] https://onlinecourses.science.psu.edu/s ...

  2. 我的Java开发学习之旅------>解惑Java进行三目运算时的自动类型转换

    今天看到两个面试题,居然都做错了.通过这两个面试题,也加深对三目运算是的自动类型转换的理解. 题目1.以下代码输出结果是(). public class Test { public static vo ...

  3. 使用appium和testng实现Android自动截图

    简单介绍 需求场景是:当测试安卓应用的脚本得到失败结果时,对当前手机屏幕截图,便于查找问题. 实现方式是:1)定义一个父类UITest,作为所有测试类的父类.在父类中UITest中定义一个截图的方法, ...

  4. mysql中Incorrect string value乱码问题解决方案

    mysql中Incorrect string value乱码问题解决方案   你是否遇到过类似以下错误? java.sql.SQLException: Incorrect string value: ...

  5. [UVA 12633] Super Rooks on Chessboard FFT+计数

    如果只有行和列的覆盖,那么可以直接做,但现在有左上到右下的覆盖. 考虑对行和列的覆盖情况做一个卷积,然后就有了x+y的非覆盖格子数. 然后用骑士的左上到右下的覆盖特判掉那些x+y的格子就可以了. 注意 ...

  6. 一、为什么要学习Java虚拟机?

    一.为什么要学习Java虚拟机?       这里我们使用举例来说明为什么要学习Java虚拟机,其实这个问题就和为什么要学习数据结构和算法是一个道理,工欲善其事,必先利其器.曾经的我经常害怕处理内存溢 ...

  7. 一篇文章教你如何用R进行数据挖掘

    一篇文章教你如何用R进行数据挖掘 引言 R是一种广泛用于数据分析和统计计算的强大语言,于上世纪90年代开始发展起来.得益于全世界众多 爱好者的无尽努力,大家继而开发出了一种基于R但优于R基本文本编辑器 ...

  8. jQuery移动光标改变图像

    脚本代码移动光标改变图像是一款让你通过移动光标显示和调整多个图像或其他方法来触发. 代码:http://www.huiyi8.com/sc/10628.html

  9. python to 可执行文件

    cx_Freeze for Windows, Linux, and Mac OS X (Python 2.7, 3.x) pyinstaller for Windows, Linux, and Mac ...

  10. C语言中mktime函数功能及用法

    今天联系写一个日历的程序,需要算出月份中的第一天是星期几,用到了mktime()这个函数,感觉这个函数挺有用的,分享给大家. 原型:time_t mktime(struct tm *) 其中的tm结构 ...