题目描述

Farmer John has grown so lazy that he no longer wants to continue maintaining the cow paths that currently provide a way to visit each of his N (5 <= N <= 10,000) pastures (conveniently numbered 1..N). Each and every pasture is home to one cow. FJ plans to remove as many of the P (N-1 <= P <= 100,000) paths as possible while keeping the pastures connected. You must determine which N-1 paths to keep.

Bidirectional path j connects pastures S_j and E_j (1 <= S_j <= N; 1 <= E_j <= N; S_j != E_j) and requires L_j (0 <= L_j <= 1,000) time to traverse. No pair of pastures is directly connected by more than one path.

The cows are sad that their transportation system is being reduced. You must visit each cow at least once every day to cheer her up. Every time you visit pasture i (even if you're just traveling

through), you must talk to the cow for time C_i (1 <= C_i <= 1,000).

You will spend each night in the same pasture (which you will choose) until the cows have recovered from their sadness. You will end up talking to the cow in the sleeping pasture at least in the morning when you wake up and in the evening after you have returned to sleep.

Assuming that Farmer John follows your suggestions of which paths to keep and you pick the optimal pasture to sleep in, determine the minimal amount of time it will take you to visit each cow at least once in a day.

For your first 10 submissions, you will be provided with the results of running your program on a part of the actual test data.

POINTS: 300

约翰有N个牧场,编号依次为1到N。每个牧场里住着一头奶牛。连接这些牧场的有P条道路,每条道路都是双向的。第j条道路连接的是牧场Sj和Ej,通行需要Lj的时间。两牧场之间最多只有一条道路。约翰打算在保持各牧场连通的情况下去掉尽量多的道路。

约翰知道,在道路被强拆后,奶牛会非常伤心,所以他计划拆除道路之后就去忽悠她们。约翰可以选择从任意一个牧场出发开始他维稳工作。当他走访完所有的奶牛之后,还要回到他的出发地。每次路过牧场i的时候,他必须花Ci的时间和奶牛交谈,即使之前已经做过工作了,也要留下来再谈一次。注意约翰在出发和回去的时候,都要和出发地的奶牛谈一次话。请你计算一下,约翰要拆除哪些道路,才能让忽悠奶牛的时间变得最少?

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and P

  • Lines 2..N+1: Line i+1 contains a single integer: C_i

  • Lines N+2..N+P+1: Line N+j+1 contains three space-separated

integers: S_j, E_j, and L_j

输出格式:

  • Line 1: A single integer, the total time it takes to visit all the cows (including the two visits to the cow in your

sleeping-pasture)

输入输出样例

输入样例#1:

5 7
10
10
20
6
30
1 2 5
2 3 5
2 4 12
3 4 17
2 5 15
3 5 6
4 5 12
输出样例#1:

176

说明

   +-(15)-+
/ \
/ \
1-(5)-2-(5)-3-(6)--5
\ /(17) /
(12)\ / /(12)
4------+ Keep these paths:
1-(5)-2-(5)-3 5
\ /
(12)\ /(12)
*4------+

Wake up in pasture 4 and visit pastures in the order 4, 5, 4, 2, 3, 2, 1, 2, 4 yielding a total time of 176 before going back to sleep.

最小生成树

屠龙宝刀点击就送

#include <algorithm>
#include <cstdio> using namespace std;
#define Max 100000 struct node
{
int x,y,z;
}edge[Max*]; int i,fa[],N,p,tot,c[];
int find_father(int x)
{
if(x==fa[x]) return x;
else return fa[x]=find_father(fa[x]);
}
bool cmp(node a,node b)
{
return a.z<b.z;
}
int main()
{
int ans=0x7fffffff;
int d;
scanf("%d%d",&N,&p);
for(i=;i<=N;++i)
{
scanf("%d",&c[i]);
ans=min(ans,c[i]);
}
for(i=;i<=p;++i)
{
scanf("%d%d%d",&edge[i].x,&edge[i].y,&d);
edge[i].z=d*+c[edge[i].x]+c[edge[i].y];
}
sort(edge+,edge++p,cmp);
for(i=;i<=N;++i) fa[i]=i;
int k=;
for(i=;i<=p;++i)
{
int fx=find_father(edge[i].x),fy=find_father(edge[i].y);
if(fx!=fy)
{
fa[fx]=fy;
ans+=edge[i].z;
k++;
if(k==N-) break;
}
}
printf("%d",ans);
return ;
}

洛谷 P2916 [USACO08NOV]为母牛欢呼Cheering up the Cows的更多相关文章

  1. 洛谷——P2916 [USACO08NOV]为母牛欢呼Cheering up the Cows

    https://www.luogu.org/problem/show?pid=2916 题目描述 Farmer John has grown so lazy that he no longer wan ...

  2. 洛谷 P2916 [USACO08NOV]为母牛欢呼Cheering up the C…

    题目描述 Farmer John has grown so lazy that he no longer wants to continue maintaining the cow paths tha ...

  3. 洛谷P2916 [USACO08NOV]为母牛欢呼(最小生成树)

    P2916 [USACO08NOV]为母牛欢呼Cheering up the C… 题目描述 Farmer John has grown so lazy that he no longer wants ...

  4. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 解题报告

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: ...

  5. 洛谷P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  6. 洛谷——P2919 [USACO08NOV]守护农场Guarding the Farm

    P2919 [USACO08NOV]守护农场Guarding the Farm 题目描述 The farm has many hills upon which Farmer John would li ...

  7. 洛谷——P2846 [USACO08NOV]光开关Light Switching

    P2846 [USACO08NOV]光开关Light Switching 题目大意: 灯是由高科技——外星人鼠标操控的.你只要左击两个灯所连的鼠标, 这两个灯,以及之间的灯都会由暗变亮,或由亮变暗.右 ...

  8. 洛谷 P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows

    P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题目描述 Each of Farmer John's N (4 <= N <= 16) cows has a u ...

  9. 洛谷 P2918 [USACO08NOV]买干草Buying Hay 题解

    P2918 [USACO08NOV]买干草Buying Hay 题目描述 Farmer John is running out of supplies and needs to purchase H ...

随机推荐

  1. Robot FrameWork基础学习(三)

    一.关键字(Keyword)根据架构的区分可分为以下三层结构: 底层关键字.公共层关键字.特性关键字. 底层关键字一般与最底层的代码在关系,为上层公共关键字和特性关键字提供接口. 公共层关键字:一般是 ...

  2. TypeScript完全解读(26课时)_15.模块和命名空间

    新建文件夹ts-modules 并新建index.ts 在根index.ts内引入 新建a.ts文件 ts在1.5之前有两个概念一个是内部模块,一个是外部模块,因为在1.5之前es6的标准还没有提出 ...

  3. Flutter实战视频-移动电商-43.详细页_补充首页跳转到详细页

    43.详细页_补充首页跳转到详细页 首页轮播点击到详细页 修改我们轮播这里的代码:SwiperDiy这个类这里的代码 return InkWell( onTap: (){ Application.ro ...

  4. Identity Server 4 原理和实战(完结)_Hybrid Flow 实例, Claims, 角色授权和策略授权

    4分50 建立客户端 不需要身份认证 客户端叫做HybirdClient 配置IdentityServer服务端,先把客户端添加上 把userClaims添加到token里面 然后运行服务端就可以了 ...

  5. CodeForces 349B Color the Fence (DP)

    题意:给出1~9数字对应的费用以及一定的费用,让你输出所选的数字所能组合出的最大的数值. 析:DP,和01背包差不多的,dp[i] 表示费用最大为 i 时,最多多少位,然后再用两个数组,一个记录路径, ...

  6. jquery 点击某一行,得到这一行的每个列的数据

    <html><head> <title>test</title> <script src="../Scripts/jquery-1.8. ...

  7. CodeForces722C Destroying Array【瞎搞】

    题意: 先给你一个序列,然后给你n个1-n的一个数,让你求前i个元素销毁的时候,区间字段和区间最大: 思路: 离线处理,维护新区间首尾位置的起点和终点,倒着处理: #include <bits/ ...

  8. Forward Rendering 正向渲染

    Forward Rendering 正向渲染        正向渲染一个基于着色器的渲染路径.它支持逐像素计算光照(包括法线贴图和灯光Cookies)和来自一个平行光的实时阴影.在默认设置中,少数最亮 ...

  9. 【Luogu P1502】 窗口的星星

    →传送窗口 (复制一下题面好了~) 题目背景 小卡买到了一套新房子,他十分的高兴,在房间里转来转去. 题目描述 晚上,小卡从阳台望出去,“哇~~~~好多星星啊”,但他还没给其他房间设一个窗户,天真的小 ...

  10. C#连接Sybase数据库,Anywhere 8

    数据库版本是Adaptive Server Anywhere 8 1.添加引用,程序集 iAnywhere.Data.AsaClient.dll文件在数据库的安装目录下,例如:C:\Program F ...