传送门:http://poj.org/problem?id=1330

Nearest Common Ancestors

Time Limit: 1000MS Memory Limit: 10000K

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

In the figure, each node is labeled with an integer from {1, 2,…,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,…, N. Each of the next N -1 lines contains a pair of integers that represent an edge –the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2

16

1 14

8 5

10 16

5 9

4 6

8 4

4 10

1 13

6 15

10 11

6 7

10 2

16 3

8 1

16 12

16 7

5

2 3

3 4

3 1

1 5

3 5

Sample Output

4

3


解题心得:

  1. 这是一个LCA的裸题,可以用用离线算法,也就是tarjan来做这个题,运用并查集,一棵树上的点分为三种,一种是已经找过的点,一种是正在找的点,还有一种是没有找过的点,如果其中一个点是没有找过的就不管,继续找下去,如果一个点是找过的,就直接用并查集回到他们共同的根节点(两个点必然在同一棵子树下),如果两个点都是正在找的点,那么其中一个点就是其最近祖先。
  2. 还有一种就是使用倍增法来做这个题,使用倍增法需要知道当前点的深度和父节点。两个点的最近公共祖先就是他们一起向上走第一次遇到的地方,运用这个性质就可以先将两个点的深度调到相同,然后一起向上走,第一次遇到的地方就是其最近公共祖先。
  3. 优化的思想也很简单,两个点一步一步的向上走是不是太慢了,可不可以多走几步,那怎么走呢?就可以想到使用RMQ的思想,按照二进制来走,在统一深度的时候可以将深度大的的那个点,走深度小的那个点的二进制中没有1的位置。然后一起向上面走二进制的步数,找打到第一个不是公共祖先的点然后返回他的父节点。思想比较简单,还是看实现过程吧。

tarjan写法:

#include<cstring>
#include<stdio.h>
#include<vector>
using namespace std;
const int maxn = 1e4+100;
int father[maxn],q1,q2,ans,n;
bool vis[maxn];
vector <int> ve[maxn]; void init()
{
memset(vis,0,sizeof(vis));
memset(father,0,sizeof(father));
for(int i=0;i<maxn;i++)
ve[i].clear();
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
vis[b] = true;
}
scanf("%d%d",&q1,&q2);
} int find(int x)
{
if(x == father[x])
return x;
return father[x] = find(father[x]);
} void tarjan(int x)
{
father[x] = x;
for(int i=0;i<ve[x].size();i++)
{
int v = ve[x][i];
tarjan(v);
father[v] = x;
}
if(x == q1 || x == q2)
{
if(x != q1)
swap(q1,q2);
if(father[q2])//如果其中一个点没被找到那么就继续找下去
ans = find(father[q2]);
}
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
tarjan(i);
break;
}
}
printf("%d\n",ans);
}
return 0;
}

倍增写法(无优化)

#include<stdio.h>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 1e4+100;
vector <int> ve[maxn];
int n,father[maxn],dep[maxn];
bool vis[maxn]; void init()
{
for(int i=0;i<=n;i++)
ve[i].clear();
memset(father,0,sizeof(father));
memset(dep,0,sizeof(dep));
memset(vis,0,sizeof(vis));
for(int i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
vis[b] = true;
ve[a].push_back(b);
}
} int dfs(int u,int f,int d)
{
father[u] = f;//记录父节点
dep[u] = d;//记录深度
for(int i=0;i<ve[u].size();i++)
{
int v = ve[u][i];
if(v == f)//主要是处理单向边
continue;
dfs(v,u,d+1);
}
} void LCA(int q,int p)
{
if(dep[p] > dep[q])
swap(q,p);
while(dep[q] > dep[p])//调节到同一深度
q = father[q];
while(p != q)//一起向上走
{
p = father[p];
q = father[q];
}
printf("%d\n",q);
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i,-1,0);
break;
}
int q,p;
scanf("%d%d",&q,&p);
LCA(q,p);
}
}

LCA进过优化后的代码:

#include<stdio.h>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 1e4+100;
const int LOG = 33;
int p[maxn][33],dep[maxn],n;
bool vis[maxn];
vector <int> ve[maxn]; void init()
{
for(int i=0;i<=n;i++)
ve[i].clear();
memset(dep,0,sizeof(dep));
memset(p,0,sizeof(p));
memset(vis,0,sizeof(vis));
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
vis[b] = true;
}
} void dfs(int u,int f,int d)
{
p[u][0] = f;//u点向前移动2的0次方位为它的父节点
dep[u] = d;
for(int i=0;i<ve[u].size();i++)
{
int v = ve[u][i];
if(v == f)
continue;
dfs(v,u,d+1);
}
} int LCA(int x,int y)
{
for(int i=0;i+1<LOG;i++)
for(int j=1;j<=n;j++)
if(p[j][i] < 0) p[j][i+1] = -1;//树中的节点向上移动超出了根节点都为-1
else p[j][i+1] = p[p[j][i]][i];//否则RMQ思想
if(dep[y] > dep[x])
swap(y,x);
for(int i=0;i<LOG;i++)
if(dep[x] - dep[y] >> i & 1)//向上移动到同一深度的时候,将更深的节点二进制表示中多出部分的1移走就行了
x = p[x][i];
if(x == y)//同一深度的时候已经合一了
return x;
for(int i=LOG-1;i>=0;i--)//找到向上移动中最大祖先的下面第一个节点
{
if(p[x][i] != p[y][i])
{
x = p[x][i];
y = p[y][i];
}
}
return p[x][0];
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i,-1,0);
break;
}
int p,q;
scanf("%d%d",&p,&q);
printf("%d\n",LCA(p,q));
}
}

POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)的更多相关文章

  1. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  2. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  3. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  4. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  5. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  6. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  7. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  8. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  9. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  10. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

随机推荐

  1. 简单记录下SpringCloud的微服务架构和一些概念

    一.微服务的注册与发现——Eureka 和许多分布式设计一样,分布式的应用一般都会有一个服务中心,用于记录各个机器的信息.微服务架构也一样,我们把一个大的应用解耦成这么多个那么多个服务,那么在想要调用 ...

  2. ML.NET 示例:目录

    ML.NET 示例中文版:https://github.com/feiyun0112/machinelearning-samples.zh-cn 英文原版请访问:https://github.com/ ...

  3. feign实现服务间的负载均衡

    feign Feign是一个声明式的Web Service客户端,它使得编写Web Serivce客户端变得更加简单.我们只需要使用Feign来创建一个接口并用注解来配置它既可完成.它具备可插拔的注解 ...

  4. 中介者模式和php实现

    中介者模式: 中介者模式(Mediator Pattern)定义:用一个中介对象来封装一系列的对象交互,中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互.中介者模 ...

  5. 公司项目git开发流程规范

    手动修改冲突之后,git add . git commit ,git push

  6. codevs 4093 EZ的间谍网络

    时间限制: 10 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 由于外国间谍的大量渗入,学校安全正处于高度的危机之中.YJY决定挺身而作出反抗 ...

  7. 无法启动 Diagnostic Policy Service(服务错误 1079)的解决方案

    问题 在services.msc中手动启动 Diagnostic Policy Service 时,弹出以下提示: ---------------------------服务------------- ...

  8. iphone开发思维导图

  9. Spark性能调优之道——解决Spark数据倾斜(Data Skew)的N种姿势

    原文:http://blog.csdn.net/tanglizhe1105/article/details/51050974 背景 很多使用Spark的朋友很想知道rdd里的元素是怎么存储的,它们占用 ...

  10. javascript报错:ReferenceError: $ is not defined解决办法

    原因很简单,要么是未导入jquery包,要么是导入的顺序不对. 例如,我在制作Chrome扩展程序时,其中的一块代码如下: 然后运行时报上述错误. 解决方法:我们不难发现script位置有问题,因为$ ...