POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)
传送门:http://poj.org/problem?id=1330
Nearest Common Ancestors
Time Limit: 1000MS Memory Limit: 10000K
Description
A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:
In the figure, each node is labeled with an integer from {1, 2,…,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,…, N. Each of the next N -1 lines contains a pair of integers that represent an edge –the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.
Output
Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
解题心得:
- 这是一个LCA的裸题,可以用用离线算法,也就是tarjan来做这个题,运用并查集,一棵树上的点分为三种,一种是已经找过的点,一种是正在找的点,还有一种是没有找过的点,如果其中一个点是没有找过的就不管,继续找下去,如果一个点是找过的,就直接用并查集回到他们共同的根节点(两个点必然在同一棵子树下),如果两个点都是正在找的点,那么其中一个点就是其最近祖先。
- 还有一种就是使用倍增法来做这个题,使用倍增法需要知道当前点的深度和父节点。两个点的最近公共祖先就是他们一起向上走第一次遇到的地方,运用这个性质就可以先将两个点的深度调到相同,然后一起向上走,第一次遇到的地方就是其最近公共祖先。
- 优化的思想也很简单,两个点一步一步的向上走是不是太慢了,可不可以多走几步,那怎么走呢?就可以想到使用RMQ的思想,按照二进制来走,在统一深度的时候可以将深度大的的那个点,走深度小的那个点的二进制中没有1的位置。然后一起向上面走二进制的步数,找打到第一个不是公共祖先的点然后返回他的父节点。思想比较简单,还是看实现过程吧。
tarjan写法:
#include<cstring>
#include<stdio.h>
#include<vector>
using namespace std;
const int maxn = 1e4+100;
int father[maxn],q1,q2,ans,n;
bool vis[maxn];
vector <int> ve[maxn];
void init()
{
memset(vis,0,sizeof(vis));
memset(father,0,sizeof(father));
for(int i=0;i<maxn;i++)
ve[i].clear();
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
vis[b] = true;
}
scanf("%d%d",&q1,&q2);
}
int find(int x)
{
if(x == father[x])
return x;
return father[x] = find(father[x]);
}
void tarjan(int x)
{
father[x] = x;
for(int i=0;i<ve[x].size();i++)
{
int v = ve[x][i];
tarjan(v);
father[v] = x;
}
if(x == q1 || x == q2)
{
if(x != q1)
swap(q1,q2);
if(father[q2])//如果其中一个点没被找到那么就继续找下去
ans = find(father[q2]);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
{
if(!vis[i])
{
tarjan(i);
break;
}
}
printf("%d\n",ans);
}
return 0;
}
倍增写法(无优化)
#include<stdio.h>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 1e4+100;
vector <int> ve[maxn];
int n,father[maxn],dep[maxn];
bool vis[maxn];
void init()
{
for(int i=0;i<=n;i++)
ve[i].clear();
memset(father,0,sizeof(father));
memset(dep,0,sizeof(dep));
memset(vis,0,sizeof(vis));
for(int i=0;i<n-1;i++)
{
int a,b;
scanf("%d%d",&a,&b);
vis[b] = true;
ve[a].push_back(b);
}
}
int dfs(int u,int f,int d)
{
father[u] = f;//记录父节点
dep[u] = d;//记录深度
for(int i=0;i<ve[u].size();i++)
{
int v = ve[u][i];
if(v == f)//主要是处理单向边
continue;
dfs(v,u,d+1);
}
}
void LCA(int q,int p)
{
if(dep[p] > dep[q])
swap(q,p);
while(dep[q] > dep[p])//调节到同一深度
q = father[q];
while(p != q)//一起向上走
{
p = father[p];
q = father[q];
}
printf("%d\n",q);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i,-1,0);
break;
}
int q,p;
scanf("%d%d",&q,&p);
LCA(q,p);
}
}
LCA进过优化后的代码:
#include<stdio.h>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 1e4+100;
const int LOG = 33;
int p[maxn][33],dep[maxn],n;
bool vis[maxn];
vector <int> ve[maxn];
void init()
{
for(int i=0;i<=n;i++)
ve[i].clear();
memset(dep,0,sizeof(dep));
memset(p,0,sizeof(p));
memset(vis,0,sizeof(vis));
for(int i=1;i<n;i++)
{
int a,b;
scanf("%d%d",&a,&b);
ve[a].push_back(b);
vis[b] = true;
}
}
void dfs(int u,int f,int d)
{
p[u][0] = f;//u点向前移动2的0次方位为它的父节点
dep[u] = d;
for(int i=0;i<ve[u].size();i++)
{
int v = ve[u][i];
if(v == f)
continue;
dfs(v,u,d+1);
}
}
int LCA(int x,int y)
{
for(int i=0;i+1<LOG;i++)
for(int j=1;j<=n;j++)
if(p[j][i] < 0) p[j][i+1] = -1;//树中的节点向上移动超出了根节点都为-1
else p[j][i+1] = p[p[j][i]][i];//否则RMQ思想
if(dep[y] > dep[x])
swap(y,x);
for(int i=0;i<LOG;i++)
if(dep[x] - dep[y] >> i & 1)//向上移动到同一深度的时候,将更深的节点二进制表示中多出部分的1移走就行了
x = p[x][i];
if(x == y)//同一深度的时候已经合一了
return x;
for(int i=LOG-1;i>=0;i--)//找到向上移动中最大祖先的下面第一个节点
{
if(p[x][i] != p[y][i])
{
x = p[x][i];
y = p[y][i];
}
}
return p[x][0];
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
init();
for(int i=1;i<=n;i++)
if(!vis[i])
{
dfs(i,-1,0);
break;
}
int p,q;
scanf("%d%d",&p,&q);
printf("%d\n",LCA(p,q));
}
}
POJ:1330-Nearest Common Ancestors(LCA在线、离线、优化算法)的更多相关文章
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors LCA题解
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19728 Accept ...
- POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)
/* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...
- poj 1330 Nearest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...
- POJ 1330 Nearest Common Ancestors(LCA模板)
给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
随机推荐
- spring assert 用法
spring在提供一个强大的应用开发框架的同时也提供了很多优秀的开发工具类,合理的运用这些工具,将有助于提高开发效率.增强代码质量.下面就最常用的Assert工具类,简要介绍一下它的用法.Assert ...
- linux basename命令的使用
用途 返回一个字符串参数的基本文件名称. 语法 basename String [ Suffix ] 描述 basename 命令读取 String 参数,删除以 /(斜杠) 结尾的前缀以及任何指定的 ...
- go实现set
package main import ( "fmt" "sync" ) type object interface{} type Set struct { m ...
- 简述null undefined NaN的异同
1. 类型类型分析: JS中数据类型有5种:string,number,boolean,undefined,object,前四种值类型(基础数据类型),object是引用类型 var a1; //un ...
- linux机器上部署多台Tomcat
在Linux机器上部署多台Tomcat, 我部署的是Tomcat8,只需要一步,即避免端口号冲突. 在解压后的tomcat目录下,修改conf下server.xml. 修改shutdown端口: &l ...
- COGS 2815. 天黑请闭眼
★ 输入文件:jos.in 输出文件:jos.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 天亮了,请大家睁眼 昨晚是,平安夜. 处于集会中心的村民们大多数都 ...
- 【Python图像特征的音乐序列生成】数据集制作的一些tricks
关于数据集的制作,我决定去掉很多不必要的东西,比如和弦,于是我选择了melody部分的旋律. 有了midi文件,我现在要abc序列,所以我要通过midi2abc转换一下文件. 批处理程序效果如下: 文 ...
- 常用的CSS居中方式
1.水平居中margin 0 auto;(浮动元素除外) 这个属性在网页制作的过程中是经常被用到的,一般情况下页面的版心你就可以看到它. <style> .father { width: ...
- String中关于BeanFactory
org.springframework.beans及org.springframework.context包是Spring IoC容器的基础.BeanFactory提供的高级配置机制,使得管理任何性质 ...
- C# 替换去除HTML标记方法(正则表达式)
[from] http://blog.csdn.net/sgear/article/details/6263848/// <summary> /// 将所有HTML标签替换成"& ...