3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 352  Solved: 181
[Submit][Status][Discuss]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 101
int n,ans;
struct node{
int s,v;
}a[maxn];
int cmp(node x,node y){return x.s<y.s;}
void dfs1(int now,int limit,int sum){
ans=max(ans,sum);
if(now>n)return;
for(int i=now+;i<=n;i++){
if(a[i].s-a[now].s<limit)continue;
else dfs1(i,a[i].s-a[now].s,sum+a[i].v);
}
}
void dfs2(int now,int limit,int sum){
ans=max(ans,sum);
if(now<)return;
for(int i=now-;i>=;i--){
if(a[now].s-a[i].s<limit)continue;
else dfs2(i,a[now].s-a[i].s,sum+a[i].v);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].s,&a[i].v);
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++){
dfs1(i,,a[i].v);//向右
dfs2(i,,a[i].v);//向左
}
printf("%d",ans);
}

36分 暴力

/*
首先可以写出n^3dp的状态转移方程:f[i][j]=max{f[j][k]+val[i]},f[i][j]表示最后一步跳到点从j点跳到i点的最大价值(状态不能设成f[i],因为j对后面的决策是有影响的),然后枚举k转移,但这样在时限内是无法通过的,于是考虑如何优化dp,可以改变一下枚举顺序,也就是一般的都是先枚举i再枚举j,可以先枚举j再枚举i,这样有什么好处呢,那么k就以直接用一个指针从j-1扫到1,因为随着i的不断增加,i与j之间的距离是递增的,那么之前合法的决策现在也一定合法,那么就可以用一个值记录最大的f[j][k],转移即可。然后还要记得正反做两遍。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1010
int n,dp[maxn][maxn],ans;
struct node{
int pos,v;
}a[maxn];
int cmp(node x,node y){
return x.pos<y.pos;
}
int cmp2(node x,node y){
return x.pos>y.pos;
}
void work1(){
for(int j=;j<=n;j++){//从右往左跳
int k=j-,val=dp[j][]+a[j].v;
for(int i=j+;i<=n;i++){
while(k&&a[i].pos-a[j].pos>=a[j].pos-a[k].pos)
val=max(val,dp[j][k]+a[j].v),k--;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
void work2(){
for(int j=n;j>=;j--){
int k=j+,val=dp[j][n+]+a[j].v;
for(int i=j-;i>=;i--){
while(k<n+&&a[k].pos-a[j].pos<=a[j].pos-a[i].pos)
val=max(val,dp[j][k]+a[j].v),k++;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
int main(){
//freopen("Cola.txt","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp);
work1();
work2();
printf("%d",ans);
}

100分 单调队列优化dp

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 1010
int n,ans,dp[maxn][maxn],q[maxn][],head,tail;
struct node{
int pos,v;
}a[maxn];
int cmp1(node x,node y){return x.pos<y.pos;}
int cmp2(node x,node y){return x.pos>y.pos;}
void work(){
for(int i=;i<=n;i++){
dp[i][i]=a[i].v;
head=,tail=;
for(int j=i-;j>=;j--){
while(head<=tail&&q[tail][]<=dp[i][j])tail--;
q[++tail][]=j;q[tail][]=dp[i][j];
}
for(int j=i+;j<=n;j++){
dp[j][i]=a[i].v+a[j].v;
while(head<=tail&&abs(a[q[head][]].pos-a[i].pos)<abs(a[i].pos-a[j].pos))head++;
if(head<=tail)dp[j][i]=max(dp[j][i],a[j].v+q[head][]);
ans=max(ans,dp[j][i]);
}
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp1);
work();
sort(a+,a+n+,cmp2);
work();
printf("%d",ans);
return ;
}

100分 单调队列优化dp(另一种写法)

Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)的更多相关文章

  1. BZOJ3315: [Usaco2013 Nov]Pogo-Cow

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 143  Solved: 79[Submit] ...

  2. 【BZOJ】3314: [Usaco2013 Nov]Crowded Cows(单调队列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3314 一眼就是维护一个距离为d的单调递减队列... 第一次写.....看了下别人的代码... 这一题 ...

  3. HDU 2717 Catch That Cow (bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2717 Catch That Cow Time Limit: 5000/2000 MS (Java/Ot ...

  4. 【BZOJ】3016: [Usaco2012 Nov]Clumsy Cows(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3016 之前yy了一个贪心,,,但是错了,,就是枚举前后对应的字符(前面第i个和后面第i个)然后相同答 ...

  5. 题解报告:hdu 2717 Catch That Cow(bfs)

    Problem Description Farmer John has been informed of the location of a fugitive cow and wants to cat ...

  6. POJ3279 Catch That Cow(BFS)

    本文来源于:http://blog.csdn.net/svitter 意甲冠军:给你一个数字n, 一个数字k.分别代表主人的位置和奶牛的位置,主任能够移动的方案有x+1, x-1, 2*x.求主人找到 ...

  7. POJ 3278 Catch That Cow(bfs)

    传送门 Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 80273   Accepted: 25 ...

  8. HDU 2717 Catch That Cow(BFS)

    Catch That Cow Farmer John has been informed of the location of a fugitive cow and wants to catch he ...

  9. Catch That Cow(BFS)

    Catch That Cow Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. C++三种继承方式

    一.三种继承方式 继承方式不同,第一个不同是的是派生类继承基类后,各成员属性发生变化.第二个不同是派生类的对象能访问基类中哪些成员发生变化.表格中红色标注.

  2. [容易] A + B 问题

    题目来源:http://www.lintcode.com/zh-cn/problem/a-b-problem/

  3. PHP echo() 函数

    实例 输出文本: <?php echo "Hello world!"; ?> 定义和用法 echo() 函数输出一个或多个字符串. 注释:echo() 函数实际不是一个 ...

  4. git用远程库的内容覆盖本地

    git fetch --all 下载远程的库的内容到本地,不做任何的合并(怎么合并可以自己选择) git reset --hard origin/master 撤销本地.暂存区.版本库(用远程服务器的 ...

  5. 《CSS权威指南(第三版)》---第七章 基本视觉格式化

    主要知识记录: 1.给一个元素指定内容区宽度,如果设置了内边距,边框和外边距,这些因素都会影响CSS的width属性. 2.在水平格式化的7个属性中,width,margin-left,margin- ...

  6. 4.7 希尔(shell)排序法

    4-7 ShellSort.c #include <stdio.h> #include "4-1 CreateData.c" //生成随机数的函数 #define AR ...

  7. html5--2.5新的布局元素(4)-aside/nav

    html5--2.5新的布局元素(4)-aside/nav 学习要点 了解aside/nav元素的语义和用法 通过实例理解aside/nav元素的用法 aside元素(附属信息) aside元素通常用 ...

  8. Go丨语言对MySQL数据库的增、删、改、查操作

    1.建立数据库名为: go_test_db 2.建表名为:userinfo 字段: uid int username varchar language varchar created varchar ...

  9. java中路径的获取

    网上摘录 (1).request.getRealPath("/");//不推荐使用获取工程的根路径 (2).request.getRealPath(request.getReque ...

  10. linux进程学习-进程描述符的存储

    当进程被新建时,内核会给进程分配一个8K的空间作为进程的内核堆栈.同时我们知道task_struct结构体也会被创建,但有意思的是,内核不会给task_struct单独分别空间,而是直接将其扔到8k的 ...