3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 352  Solved: 181
[Submit][Status][Discuss]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 101
int n,ans;
struct node{
int s,v;
}a[maxn];
int cmp(node x,node y){return x.s<y.s;}
void dfs1(int now,int limit,int sum){
ans=max(ans,sum);
if(now>n)return;
for(int i=now+;i<=n;i++){
if(a[i].s-a[now].s<limit)continue;
else dfs1(i,a[i].s-a[now].s,sum+a[i].v);
}
}
void dfs2(int now,int limit,int sum){
ans=max(ans,sum);
if(now<)return;
for(int i=now-;i>=;i--){
if(a[now].s-a[i].s<limit)continue;
else dfs2(i,a[now].s-a[i].s,sum+a[i].v);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].s,&a[i].v);
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++){
dfs1(i,,a[i].v);//向右
dfs2(i,,a[i].v);//向左
}
printf("%d",ans);
}

36分 暴力

/*
首先可以写出n^3dp的状态转移方程:f[i][j]=max{f[j][k]+val[i]},f[i][j]表示最后一步跳到点从j点跳到i点的最大价值(状态不能设成f[i],因为j对后面的决策是有影响的),然后枚举k转移,但这样在时限内是无法通过的,于是考虑如何优化dp,可以改变一下枚举顺序,也就是一般的都是先枚举i再枚举j,可以先枚举j再枚举i,这样有什么好处呢,那么k就以直接用一个指针从j-1扫到1,因为随着i的不断增加,i与j之间的距离是递增的,那么之前合法的决策现在也一定合法,那么就可以用一个值记录最大的f[j][k],转移即可。然后还要记得正反做两遍。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1010
int n,dp[maxn][maxn],ans;
struct node{
int pos,v;
}a[maxn];
int cmp(node x,node y){
return x.pos<y.pos;
}
int cmp2(node x,node y){
return x.pos>y.pos;
}
void work1(){
for(int j=;j<=n;j++){//从右往左跳
int k=j-,val=dp[j][]+a[j].v;
for(int i=j+;i<=n;i++){
while(k&&a[i].pos-a[j].pos>=a[j].pos-a[k].pos)
val=max(val,dp[j][k]+a[j].v),k--;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
void work2(){
for(int j=n;j>=;j--){
int k=j+,val=dp[j][n+]+a[j].v;
for(int i=j-;i>=;i--){
while(k<n+&&a[k].pos-a[j].pos<=a[j].pos-a[i].pos)
val=max(val,dp[j][k]+a[j].v),k++;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
int main(){
//freopen("Cola.txt","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp);
work1();
work2();
printf("%d",ans);
}

100分 单调队列优化dp

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 1010
int n,ans,dp[maxn][maxn],q[maxn][],head,tail;
struct node{
int pos,v;
}a[maxn];
int cmp1(node x,node y){return x.pos<y.pos;}
int cmp2(node x,node y){return x.pos>y.pos;}
void work(){
for(int i=;i<=n;i++){
dp[i][i]=a[i].v;
head=,tail=;
for(int j=i-;j>=;j--){
while(head<=tail&&q[tail][]<=dp[i][j])tail--;
q[++tail][]=j;q[tail][]=dp[i][j];
}
for(int j=i+;j<=n;j++){
dp[j][i]=a[i].v+a[j].v;
while(head<=tail&&abs(a[q[head][]].pos-a[i].pos)<abs(a[i].pos-a[j].pos))head++;
if(head<=tail)dp[j][i]=max(dp[j][i],a[j].v+q[head][]);
ans=max(ans,dp[j][i]);
}
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp1);
work();
sort(a+,a+n+,cmp2);
work();
printf("%d",ans);
return ;
}

100分 单调队列优化dp(另一种写法)

Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)的更多相关文章

  1. BZOJ3315: [Usaco2013 Nov]Pogo-Cow

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 143  Solved: 79[Submit] ...

  2. 【BZOJ】3314: [Usaco2013 Nov]Crowded Cows(单调队列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3314 一眼就是维护一个距离为d的单调递减队列... 第一次写.....看了下别人的代码... 这一题 ...

  3. HDU 2717 Catch That Cow (bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2717 Catch That Cow Time Limit: 5000/2000 MS (Java/Ot ...

  4. 【BZOJ】3016: [Usaco2012 Nov]Clumsy Cows(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3016 之前yy了一个贪心,,,但是错了,,就是枚举前后对应的字符(前面第i个和后面第i个)然后相同答 ...

  5. 题解报告:hdu 2717 Catch That Cow(bfs)

    Problem Description Farmer John has been informed of the location of a fugitive cow and wants to cat ...

  6. POJ3279 Catch That Cow(BFS)

    本文来源于:http://blog.csdn.net/svitter 意甲冠军:给你一个数字n, 一个数字k.分别代表主人的位置和奶牛的位置,主任能够移动的方案有x+1, x-1, 2*x.求主人找到 ...

  7. POJ 3278 Catch That Cow(bfs)

    传送门 Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 80273   Accepted: 25 ...

  8. HDU 2717 Catch That Cow(BFS)

    Catch That Cow Farmer John has been informed of the location of a fugitive cow and wants to catch he ...

  9. Catch That Cow(BFS)

    Catch That Cow Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. ubuntu 网络配置及ssh文件传输

    一.ubuntu网路配置 参考http://www.cnblogs.com/rusty/archive/2011/04/06/2007139.html /etc/network/interfaces ...

  2. matlab添加当前文件夹到函数搜索目录

    pwd表示当前路径p = genpath(folderName) 返回一个包含路径名称的字符向量,该路径名称中包含 folderName 以及 folderName 下的多级子文件夹. addpath ...

  3. Luke 5—— 可视化 Lucene 索引查看工具,可以查看ES的索引

    Luke 5 发布,可视化 Lucene 索引查看工具  oschina 发布于2015年08月31日  这是一个主要版本,该版本支持 Lucene 5.2.0. 它支持 elasticsearch ...

  4. 线程池ThreadPool的常用方法介绍

    线程池ThreadPool的常用方法介绍 如果您理解了线程池目的及优点后,让我们温故下线程池的常用的几个方法: 1. public static Boolean QueueUserWorkItem(W ...

  5. Linux_异常_01_CentOS7无法ping 百度

    一.原因 vi /etc/sysconfig/network-scripts/ifcfg-ens33 TYPE=Ethernet PROXY_METHOD=none BROWSER_ONLY=no B ...

  6. bjwc Day2 玄学

    早晨起来很开心,因为昨天跟妹子聊天聊到很晚 然后看到了题,感觉:这tm才是冬令营呀! T1构造,并没有找到性质,暴力都懒得打 T2数位dp,状态比较麻烦,看来跟dmy想到一起了,然后搞一下搞完 T3放 ...

  7. 关于qwerta

    性别女 爱好男 有时喜欢装成男孩子混迹于OI圈. 就读于长沙市MD中学 是个剧毒蒻蒻蒻. 以 qwerta['kwɜ:rtɑ] 的ID混迹于各大OJ,但是在其它地方通常用qwertaya(重名率太高了 ...

  8. javacpp-FFmpeg系列之2:通用拉流解码器,支持视频拉流解码并转换为YUV、BGR24或RGB24等图像像素数据

    javacpp-ffmpeg系列: javacpp-FFmpeg系列之1:视频拉流解码成YUVJ420P,并保存为jpg图片 javacpp-FFmpeg系列之2:通用拉流解码器,支持视频拉流解码并转 ...

  9. python爬虫知识点总结(六)BeautifulSoup库详解

    官方学习文档:https://www.crummy.com/software/BeautifulSoup/bs4/doc.zh/ 一.什么时BeautifulSoup? 答:灵活又方便的网页解析库,处 ...

  10. python爬虫知识点总结(一)库的安装

    环境要求: 1.编程语言版本python3: 2.系统:win10; 3.浏览器:Chrome68.0.3440.75:(如果不是最新版有可能影响到程序执行) 4.chromedriver2.41 注 ...