3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 352  Solved: 181
[Submit][Status][Discuss]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 101
int n,ans;
struct node{
int s,v;
}a[maxn];
int cmp(node x,node y){return x.s<y.s;}
void dfs1(int now,int limit,int sum){
ans=max(ans,sum);
if(now>n)return;
for(int i=now+;i<=n;i++){
if(a[i].s-a[now].s<limit)continue;
else dfs1(i,a[i].s-a[now].s,sum+a[i].v);
}
}
void dfs2(int now,int limit,int sum){
ans=max(ans,sum);
if(now<)return;
for(int i=now-;i>=;i--){
if(a[now].s-a[i].s<limit)continue;
else dfs2(i,a[now].s-a[i].s,sum+a[i].v);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].s,&a[i].v);
sort(a+,a+n+,cmp);
for(int i=;i<=n;i++){
dfs1(i,,a[i].v);//向右
dfs2(i,,a[i].v);//向左
}
printf("%d",ans);
}

36分 暴力

/*
首先可以写出n^3dp的状态转移方程:f[i][j]=max{f[j][k]+val[i]},f[i][j]表示最后一步跳到点从j点跳到i点的最大价值(状态不能设成f[i],因为j对后面的决策是有影响的),然后枚举k转移,但这样在时限内是无法通过的,于是考虑如何优化dp,可以改变一下枚举顺序,也就是一般的都是先枚举i再枚举j,可以先枚举j再枚举i,这样有什么好处呢,那么k就以直接用一个指针从j-1扫到1,因为随着i的不断增加,i与j之间的距离是递增的,那么之前合法的决策现在也一定合法,那么就可以用一个值记录最大的f[j][k],转移即可。然后还要记得正反做两遍。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 1010
int n,dp[maxn][maxn],ans;
struct node{
int pos,v;
}a[maxn];
int cmp(node x,node y){
return x.pos<y.pos;
}
int cmp2(node x,node y){
return x.pos>y.pos;
}
void work1(){
for(int j=;j<=n;j++){//从右往左跳
int k=j-,val=dp[j][]+a[j].v;
for(int i=j+;i<=n;i++){
while(k&&a[i].pos-a[j].pos>=a[j].pos-a[k].pos)
val=max(val,dp[j][k]+a[j].v),k--;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
void work2(){
for(int j=n;j>=;j--){
int k=j+,val=dp[j][n+]+a[j].v;
for(int i=j-;i>=;i--){
while(k<n+&&a[k].pos-a[j].pos<=a[j].pos-a[i].pos)
val=max(val,dp[j][k]+a[j].v),k++;
dp[i][j]=max(dp[i][j],val);
ans=max(ans,val+a[i].v);
}
}
}
int main(){
//freopen("Cola.txt","r",stdin);
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp);
work1();
work2();
printf("%d",ans);
}

100分 单调队列优化dp

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 1010
int n,ans,dp[maxn][maxn],q[maxn][],head,tail;
struct node{
int pos,v;
}a[maxn];
int cmp1(node x,node y){return x.pos<y.pos;}
int cmp2(node x,node y){return x.pos>y.pos;}
void work(){
for(int i=;i<=n;i++){
dp[i][i]=a[i].v;
head=,tail=;
for(int j=i-;j>=;j--){
while(head<=tail&&q[tail][]<=dp[i][j])tail--;
q[++tail][]=j;q[tail][]=dp[i][j];
}
for(int j=i+;j<=n;j++){
dp[j][i]=a[i].v+a[j].v;
while(head<=tail&&abs(a[q[head][]].pos-a[i].pos)<abs(a[i].pos-a[j].pos))head++;
if(head<=tail)dp[j][i]=max(dp[j][i],a[j].v+q[head][]);
ans=max(ans,dp[j][i]);
}
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d%d",&a[i].pos,&a[i].v);
sort(a+,a+n+,cmp1);
work();
sort(a+,a+n+,cmp2);
work();
printf("%d",ans);
return ;
}

100分 单调队列优化dp(另一种写法)

Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)的更多相关文章

  1. BZOJ3315: [Usaco2013 Nov]Pogo-Cow

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 143  Solved: 79[Submit] ...

  2. 【BZOJ】3314: [Usaco2013 Nov]Crowded Cows(单调队列)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3314 一眼就是维护一个距离为d的单调递减队列... 第一次写.....看了下别人的代码... 这一题 ...

  3. HDU 2717 Catch That Cow (bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2717 Catch That Cow Time Limit: 5000/2000 MS (Java/Ot ...

  4. 【BZOJ】3016: [Usaco2012 Nov]Clumsy Cows(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3016 之前yy了一个贪心,,,但是错了,,就是枚举前后对应的字符(前面第i个和后面第i个)然后相同答 ...

  5. 题解报告:hdu 2717 Catch That Cow(bfs)

    Problem Description Farmer John has been informed of the location of a fugitive cow and wants to cat ...

  6. POJ3279 Catch That Cow(BFS)

    本文来源于:http://blog.csdn.net/svitter 意甲冠军:给你一个数字n, 一个数字k.分别代表主人的位置和奶牛的位置,主任能够移动的方案有x+1, x-1, 2*x.求主人找到 ...

  7. POJ 3278 Catch That Cow(bfs)

    传送门 Catch That Cow Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 80273   Accepted: 25 ...

  8. HDU 2717 Catch That Cow(BFS)

    Catch That Cow Farmer John has been informed of the location of a fugitive cow and wants to catch he ...

  9. Catch That Cow(BFS)

    Catch That Cow Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. HTML5_CSS3可切换注册登录表单

    在线演示 本地下载

  2. mini2440 最小根文件系统制作和nfs启动

    mini2440 内核启动后,可以用busybox制作一个简单的根文件系统并用nfs来启动该文件系统 启动mini2440, 按任意键进入uboot,按q键进入uboot命令行: 执行以下命令: se ...

  3. 深入理解JVM - Java内存模型与线程 - 第十二章

    Java内存模型 主内存与工作内存 Java内存模型主要目标:定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节.此处的变量(Variable)与Java编程中 ...

  4. 常见css兼容问题

    链接的虚线框问题 <!-- html --> <a class="noDashedBox" href="#"><img src=& ...

  5. STL容器特征总结与迭代器失效

    Vector 内部数据结构:连续存储,例如数组. 随机访问每个元素,所需要的时间为常量. 在末尾增加或删除元素所需时间与元素数目无关,在中间或开头增加或删除元素所需时间随元素数目呈线性变化. 可动态增 ...

  6. linux增加vlan网卡配置

    1.编辑文件/etc/sysconfig/network在里面添加一行:VLAN=yes2.再生成网卡设备的配置文件ifcfg-eth1.10和ifcfg-eth1.240cd /etc/syscon ...

  7. CodeForces - 434D Nanami's Power Plant

    Codeforces - 434D 题目大意: 给定一个长为n的序列,序列中的第i为上的值\(x_i\),序列第i位上的值\(x_i\in[l_i,r_i]\),价值为\(f_i(x_i)\),其中\ ...

  8. CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现

    CRC16算法系列文章: CRC16算法之一:CRC16-CCITT-FALSE算法的java实现 CRC16算法之二:CRC16-CCITT-XMODEM算法的java实现 CRC16算法之三:CR ...

  9. Mysql源码学习——源码目录结构

    目录清单 目录名 注释 Bdb 伯克利DB表引擎 BUILD 构建工程的脚本 Client 客户端 Cmd-line-utils 命令行工具 Config 构建工程所需的一些文件 Dbug Fred ...

  10. RMAN兼容性、控制文件自动备份、保存时间、备份策略、备份脚本(二)

    RMAN 程序的兼容性 RMAN 环境由以下5部分组成:(1) RMAN executable(2) Recovery catalog database(3) Recovery catalog sch ...