GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 5454    Accepted Submission(s): 1957

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number
pairs.

Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.



Yoiu can assume that a = c = 1 in all test cases.
 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.

Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 

题意: 求(1,a) 和(1,b) 两个区间 公约数为k的对数的个数

思路:将a,b分别处以k,就能够转化为(1,a/k)和(1,b/k)两个区间两两互质的个数,能够先用欧拉函数求出(1,a)两两互质的个数,(a+1。b) 能够分解质因数。由于质因数的个数最多为7能够用容斥原理计算。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = 10000+10;
const int maxxn = 100000+10;
typedef long long ll;
int a,b,gcd;
ll ans;
bool isPrime[maxn];
ll minDiv[maxxn],phi[maxxn],sum[maxxn];
vector<int> prime,cnt[maxxn],digit[maxxn]; void getPrime(){
prime.clear();
memset(isPrime,1,sizeof isPrime);
for(int i = 2;i < maxn; i++){
if(isPrime[i]){
prime.push_back(i);
for(int j = i*i; j < maxn; j+=i){
isPrime[j] = 0;
}
}
}
} void getPhi(){
for(ll i = 1; i < maxxn; i++){
minDiv[i] = i;
}
for(ll i = 2; i*i < maxxn; i++){
if(minDiv[i]==i){
for(int j = i*i; j < maxxn; j += i){
minDiv[j] = i;
}
}
}
phi[1] = 1;
sum[1] = 1;
for(ll i = 2; i < maxxn; i++){
phi[i] = phi[i/minDiv[i]];
if((i/minDiv[i])%minDiv[i]==0){
phi[i] *= minDiv[i];
}else{
phi[i] *= minDiv[i]-1;
}
sum[i] = phi[i]+sum[i-1];
}
} void getDigit(){
for(ll i = 1; i < maxxn; i++){
int x = i;
for(int j = 0; j < prime.size()&&x >= prime[j]; j++){
if(x%prime[j]==0){
digit[i].push_back(prime[j]);
int t = 0;
while(x%prime[j]==0){
t++;
x /= prime[j];
}
cnt[i].push_back(t);
}
}
if(x!=1){
digit[i].push_back(x);
cnt[i].push_back(1);
}
}
} int main(){
getPrime();
getPhi();
getDigit();
int ncase,T=1;
cin >> ncase;
while(ncase--){
int t1,t2;
scanf("%d%d%d%d%d",&t1,&a,&t2,&b,&gcd);
if(gcd==0){
printf("Case %d: 0\n",T++,ans);
continue;
}else{
if(a > b) swap(a,b);
a /= gcd,b /= gcd;
ans = sum[a];
for(ll i = a+1; i <= b; i++){
int d = digit[i].size();
int t = 0;
vector<int> di;
for(int k = 1; k < (1<<d); k++){
di.clear();
for(int f = 0; f < d; f++){
if(k&(1<<f)){
di.push_back(digit[i][f]);
}
}
int ji = 1;
for(int f = 0; f < di.size(); f++){
ji *= di[f];
}
if(di.size()%2==0){
t -= a/ji;
}else{
t += a/ji;
}
}
ans += a-t;
}
printf("Case %d: ",T++);
cout<<ans<<endl;
} }
return 0;
}

HDU1695-GCD(数论-欧拉函数-容斥)的更多相关文章

  1. hdu1695(莫比乌斯)或欧拉函数+容斥

    题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...

  2. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  3. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  5. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  6. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  7. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  8. 【bzoj2818】: Gcd 数论-欧拉函数

    [bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://w ...

  9. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

随机推荐

  1. 001.web前端-学习了解

    学习web前端开发基础技术需要掌握:HTML.CSS.JavaScript语言.下面我们就来了解下这三门技术都是用来实现什么的: 1.html(Hypertext Markup Language)—— ...

  2. php 常用经验

    1.用单引号代替双引号来包含字符串,这样做会更快一些.因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的”函数”(译注:PHP手 ...

  3. frame,iframe,frameset用法和区别

    ■ 框架概念 : 所谓框架便是网页画面分成几个框窗,同时取得多个 URL.只需要 <FRAMESET> <FRAME> 即可,而所有框架标记需要放在一个总起的 html 档,这 ...

  4. MySQL read_only选项的作用

    1作用: 从字面意思上看就可以知道这个是把mysql设置为只读,但是这个只读只是针对一般用户而言的,对于root这种用super权限的用户read_only是没有用的. 2设置方式: set glob ...

  5. 如何查询Oracle性能监控

    1.监控等待事件select event,sum(decode(wait_time,0,0,1)) prev, sum(decode(wait_time,0,1,0)) curr,count(*)fr ...

  6. openssl编译(VC6.0)

    官网:http://www.openssl.org/ 得到源码: git clone  https://github.com/openssl/openssl 一.用vc编译器编译: 1.下载nasm: ...

  7. 对Msn协议的一点点研究

    这个也是好奇msn的协议还是2011年的时候写的, 就在网上找啊找啊, 可惜要不是不能用就是C++代码还有就是不完整, 到最后我也没弄成功,只到了下面这步就挂掉了...... 登录成功<=SBS ...

  8. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  9. python-认识Socket[入门篇]

    什么是socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket.socket通常也称作"套接字",用于描述IP地址和端口,是一个通信链 ...

  10. android开发利器--站在巨人肩膀上前行

    本文主要介绍有助于android开发的三方平台和站点. 一:开发阶段 1:SVN(一个开放源码的版本号控制系统) 团队开发没有server,代码管理就没那么方便了,推荐taocode阿里开源站点,方便 ...