GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 5454    Accepted Submission(s): 1957

Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number
pairs.

Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.



Yoiu can assume that a = c = 1 in all test cases.
 
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.

Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 
Output
For each test case, print the number of choices. Use the format in the example.
 
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
 
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 

题意: 求(1,a) 和(1,b) 两个区间 公约数为k的对数的个数

思路:将a,b分别处以k,就能够转化为(1,a/k)和(1,b/k)两个区间两两互质的个数,能够先用欧拉函数求出(1,a)两两互质的个数,(a+1。b) 能够分解质因数。由于质因数的个数最多为7能够用容斥原理计算。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = 10000+10;
const int maxxn = 100000+10;
typedef long long ll;
int a,b,gcd;
ll ans;
bool isPrime[maxn];
ll minDiv[maxxn],phi[maxxn],sum[maxxn];
vector<int> prime,cnt[maxxn],digit[maxxn]; void getPrime(){
prime.clear();
memset(isPrime,1,sizeof isPrime);
for(int i = 2;i < maxn; i++){
if(isPrime[i]){
prime.push_back(i);
for(int j = i*i; j < maxn; j+=i){
isPrime[j] = 0;
}
}
}
} void getPhi(){
for(ll i = 1; i < maxxn; i++){
minDiv[i] = i;
}
for(ll i = 2; i*i < maxxn; i++){
if(minDiv[i]==i){
for(int j = i*i; j < maxxn; j += i){
minDiv[j] = i;
}
}
}
phi[1] = 1;
sum[1] = 1;
for(ll i = 2; i < maxxn; i++){
phi[i] = phi[i/minDiv[i]];
if((i/minDiv[i])%minDiv[i]==0){
phi[i] *= minDiv[i];
}else{
phi[i] *= minDiv[i]-1;
}
sum[i] = phi[i]+sum[i-1];
}
} void getDigit(){
for(ll i = 1; i < maxxn; i++){
int x = i;
for(int j = 0; j < prime.size()&&x >= prime[j]; j++){
if(x%prime[j]==0){
digit[i].push_back(prime[j]);
int t = 0;
while(x%prime[j]==0){
t++;
x /= prime[j];
}
cnt[i].push_back(t);
}
}
if(x!=1){
digit[i].push_back(x);
cnt[i].push_back(1);
}
}
} int main(){
getPrime();
getPhi();
getDigit();
int ncase,T=1;
cin >> ncase;
while(ncase--){
int t1,t2;
scanf("%d%d%d%d%d",&t1,&a,&t2,&b,&gcd);
if(gcd==0){
printf("Case %d: 0\n",T++,ans);
continue;
}else{
if(a > b) swap(a,b);
a /= gcd,b /= gcd;
ans = sum[a];
for(ll i = a+1; i <= b; i++){
int d = digit[i].size();
int t = 0;
vector<int> di;
for(int k = 1; k < (1<<d); k++){
di.clear();
for(int f = 0; f < d; f++){
if(k&(1<<f)){
di.push_back(digit[i][f]);
}
}
int ji = 1;
for(int f = 0; f < di.size(); f++){
ji *= di[f];
}
if(di.size()%2==0){
t -= a/ji;
}else{
t += a/ji;
}
}
ans += a-t;
}
printf("Case %d: ",T++);
cout<<ans<<endl;
} }
return 0;
}

HDU1695-GCD(数论-欧拉函数-容斥)的更多相关文章

  1. hdu1695(莫比乌斯)或欧拉函数+容斥

    题意:求1-b和1-d之内各选一个数组成数对.问最大公约数为k的数对有多少个,数对是有序的.(b,d,k<=100000) 解法1: 这个能够简化成1-b/k 和1-d/k 的互质有序数对的个数 ...

  2. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  3. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. HDU 1695 GCD 欧拉函数+容斥定理

    输入a b c d k求有多少对x y 使得x在a-b区间 y在c-d区间 gcd(x, y) = k 此外a和c一定是1 由于gcd(x, y) == k 将b和d都除以k 题目转化为1到b/k 和 ...

  5. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  6. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  7. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  8. 【bzoj2818】: Gcd 数论-欧拉函数

    [bzoj2818]: Gcd 考虑素数p<=n gcd(xp,yp)=p 当 gcd(x,y)=1 xp,yp<=n满足条件 p对答案的贡献: 预处理前缀和就好了 /* http://w ...

  9. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

随机推荐

  1. php部分学习笔记

    [web 开发分为]1. 静态web 开发(html 页面) 如果我们的一个页面,始终是一成不变的,则就是属于静态web 开发,一般讲用html 技术就ok2. 动态web 开发 比如: 我们需要发帖 ...

  2. php数组分页类

    <?php class ArrayPage{ public $totalPage;//全部页数 public $lists;//每页显示数目 public $arr = array();//分页 ...

  3. [LeetCode]题解(python):146-LRU Cache

    题目来源: https://leetcode.com/problems/lru-cache/ 实现一个LRU缓存.直接上代码. 代码(python): class LRUCache(object): ...

  4. GDAL python教程(1)——用OGR读写矢量数据

    本教程的讲义和源码都是取自Utah State University的openGIS课程 相关资料,包括讲义.源码.数据样例,请从此处下载http://www.gis.usu.edu/~chrisg/ ...

  5. docker 数据映射方案

    docker run -itd -v /data/:/data1 centos bash // -v 用来指定挂载目录, :前面的/data为本地目录,:后面的/data1 为容器里的目录: dock ...

  6. 柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)

    柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航) 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重 ...

  7. android 三级菜单 BaseExpandableListAdapter

    在网上搜了非常长时间.没有找到合适的Android三级菜单.所以就自己动手写了一个,主要使用了BaseExpandableList来实现,通过三个布局文件来完毕相应的菜单项,详细实现请參照下图. wa ...

  8. JavaScript之获取和设置元素属性

    1.与我前面的随笔获取元素的那些方法不同http://www.cnblogs.com/GreenLeaves/p/5689075.html 获取元素属性的方法getAttribute()不属于docu ...

  9. 像jq那样获取对象的js原生方法

    使用过jq的童鞋非常喜欢jq获取对象的方法,只要$()就可以获取,在此我封装一个js获取对象的方法 [注意]只对chrome,Firefox,opera,Safari,ie8及ie8以上版本有效 fu ...

  10. HOJ1087

    Self Numbers My Tags   (Edit)   Source : ACM ICPC Mid-Central USA 1998   Time limit : 5 sec   Memory ...