3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 143  Solved: 79
[Submit][Status]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

HINT

 

Source

题解:
n^3的dp很好想,我们想一下如何把时间压缩成 n^2
n^3时间主要花费在寻找合法的下一个节点上,这样做了很多无用功
比如说  我们现在已经知道  i->j 之后 能到 k,那么 i->j 之后也一定能到k+1
所以我们用 f[j][i]来更新它能更新到的节点,
显然如果 s[k]-s[j]>=s[j]-s[i] 那么能转移到 k 的状态应该是 max(f[j][i],f[j][i+1],.......f[j][j])
而s[k]是递增的,也就是说能更新到 k,那么一定能更新到 k+1以及n。
所以我们维护一个区域最大值,枚举 j的前一个节点 i,tmp记录 f[j][i]..f[j][j]的最大值
然后 k 是一个递增的,这样每个节点的转移是可以做到O(n)的,整个算法的复杂度就是O(n^2)
注意还要倒着做一遍
说不太清楚,看代码更简单?有点儿单调队列的感觉?
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1500
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,ans=,f[maxn][maxn];
struct rec{int x,y;}a[maxn];
inline bool cmp(rec a,rec b)
{
return a.x<b.x;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();
for1(i,n)a[i].x=read(),a[i].y=read();
sort(a+,a+n+,cmp);
a[].x=-inf;
for1(i,n)
{
f[i][i]=a[i].y;
int k=i+,tmp=f[i][i];
for3(j,i-,)
{
while(k<=n&&a[k].x-a[i].x<a[i].x-a[j].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k++;
}
tmp=max(tmp,f[i][j]);
if(k>n)break;
}
}
//for1(i,n)for1(j,i-1)cout<<i<<' '<<j<<' '<<f[i][j]<<endl;
memset(f,,sizeof(f));
a[n+].x=inf;
for3(i,n,)
{
f[i][i]=a[i].y;
int k=i-,tmp=f[i][i];
for2(j,i+,n+)
{
while(k&&a[i].x-a[k].x<a[j].x-a[i].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<tmp<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k--;
}
tmp=max(tmp,f[i][j]);
if(!k)break;
}
}
printf("%d\n",ans);
return ;
}

BZOJ3315: [Usaco2013 Nov]Pogo-Cow的更多相关文章

  1. Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 352  Solved: 181[Submit ...

  2. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  3. BZOJ 3315: [Usaco2013 Nov]Pogo-Cow( dp )

    我真想吐槽USACO的数据弱..= = O(n^3)都能A....上面一个是O(n²), 一个是O(n^3) O(n^3)做法, 先排序, dp(i, j) = max{ dp(j, p) } + w ...

  4. BZOJ3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 86  Solved: 61[Subm ...

  5. BZOJ 3314: [Usaco2013 Nov]Crowded Cows( 单调队列 )

    从左到右扫一遍, 维护一个单调不递减队列. 然后再从右往左重复一遍然后就可以统计答案了. ------------------------------------------------------- ...

  6. 3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 111  Solved: 79[Sub ...

  7. BZOJ1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 493  Solved: 2 ...

  8. 1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 543  Solved: 2 ...

  9. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

随机推荐

  1. php命令行

    转载(http://blog.jobbole.com/109093/) PHP作为一门web开发语言,通常情况下我们都是在Web Server中运行PHP,使用浏览器访问,因此很少关注其命令行操作以及 ...

  2. [Angular 2] Rendering an Observable Date with the Async and Date Pipes

    Instead of simply pushing numbers on a timer into the template, now we'll move on to pushing actual ...

  3. 通知中心 NSNotificationCenter

    NSNotificationCenter 通知中心提供了一种在程序内广播信息的途径,一个NSNotificationCenter对象本质上是一个通知分发表(notification dispatch ...

  4. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  5. C#App.config的使用

    为什么使用App.config, 在连接数据的时候将连接字符串写在了类中,如果更换数据库地址,则需要修改这个类,然后重新编译才可以重新连接数据库.在这个时候我们就可以将连接信息放到配置文件App.co ...

  6. 《node.js开发指南》读书笔记(一)

    在开发时如果修改了js内容,不能通过刷新浏览器直接看到效果,必须通过重启nodejs程序才能看到,这样显然不利于开发调试,supervisor可以实现这个功能,监视对代码的改动,并自动重启nodejs ...

  7. Svg操作

    SVG文件的JavaScript操作 获取SVG DOM 如果使用img标签插入SVG文件,则无法获取SVG DOM.使用object.iframe.embed标签,可以获取SVG DOM. var ...

  8. 解决 jsp eclipse异常 【The import javax.servlet cannot be resolved】

    [ <%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%> 报错][impor ...

  9. (转)SVN详解

    原文地址:http://www.weixingon.com/s/visualsvn+%E4%B8%AD%E6%96%87 1.几种代理管理工具的适用场景 A.如果你的项目是5-6人的小团队,那么使用V ...

  10. 取消IDEA中光标“指哪打哪”模式

    很简单,在Settings->Editor里面去掉Allow placement of caret after end of line