3315: [Usaco2013 Nov]Pogo-Cow

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 143  Solved: 79
[Submit][Status]

Description

In an ill-conceived attempt to enhance the mobility of his prize cow Bessie, Farmer John has attached a pogo stick to each of Bessie's legs. Bessie can now hop around quickly throughout the farm, but she has not yet learned how to slow down. To help train Bessie to hop with greater control, Farmer John sets up a practice course for her along a straight one-dimensional path across his farm. At various distinct positions on the path, he places N targets on which Bessie should try to land (1 <= N <= 1000). Target i is located at position x(i), and is worth p(i) points if Bessie lands on it. Bessie starts at the location of any target of her choosing and is allowed to move in only one direction, hopping from target to target. Each hop must cover at least as much distance as the previous hop, and must land on a target. Bessie receives credit for every target she touches (including the initial target on which she starts). Please compute the maximum number of points she can obtain.

一个坐标轴有N个点,每跳到一个点会获得该点的分数,并只能朝同一个方向跳,但是每一次的跳跃的距离必须不小于前一次的跳跃距离,起始点任选,求能获得的最大分数。

Input

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x(i) and p(i), each an integer in the range 0..1,000,000.

Output

* Line 1: The maximum number of points Bessie can receive.

Sample Input

6
5 6
1 1
10 5
7 6
4 8
8 10

INPUT DETAILS: There are 6 targets. The first is at position x=5 and is worth 6 points, and so on.

Sample Output

25
OUTPUT DETAILS: Bessie hops from position x=4 (8 points) to position x=5 (6 points) to position x=7 (6 points) to position x=10 (5 points).

从坐标为4的点,跳到坐标为5的,再到坐标为7和,再到坐标为10的。

HINT

 

Source

题解:
n^3的dp很好想,我们想一下如何把时间压缩成 n^2
n^3时间主要花费在寻找合法的下一个节点上,这样做了很多无用功
比如说  我们现在已经知道  i->j 之后 能到 k,那么 i->j 之后也一定能到k+1
所以我们用 f[j][i]来更新它能更新到的节点,
显然如果 s[k]-s[j]>=s[j]-s[i] 那么能转移到 k 的状态应该是 max(f[j][i],f[j][i+1],.......f[j][j])
而s[k]是递增的,也就是说能更新到 k,那么一定能更新到 k+1以及n。
所以我们维护一个区域最大值,枚举 j的前一个节点 i,tmp记录 f[j][i]..f[j][j]的最大值
然后 k 是一个递增的,这样每个节点的转移是可以做到O(n)的,整个算法的复杂度就是O(n^2)
注意还要倒着做一遍
说不太清楚,看代码更简单?有点儿单调队列的感觉?
代码:
 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1500
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
int n,ans=,f[maxn][maxn];
struct rec{int x,y;}a[maxn];
inline bool cmp(rec a,rec b)
{
return a.x<b.x;
}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();
for1(i,n)a[i].x=read(),a[i].y=read();
sort(a+,a+n+,cmp);
a[].x=-inf;
for1(i,n)
{
f[i][i]=a[i].y;
int k=i+,tmp=f[i][i];
for3(j,i-,)
{
while(k<=n&&a[k].x-a[i].x<a[i].x-a[j].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k++;
}
tmp=max(tmp,f[i][j]);
if(k>n)break;
}
}
//for1(i,n)for1(j,i-1)cout<<i<<' '<<j<<' '<<f[i][j]<<endl;
memset(f,,sizeof(f));
a[n+].x=inf;
for3(i,n,)
{
f[i][i]=a[i].y;
int k=i-,tmp=f[i][i];
for2(j,i+,n+)
{
while(k&&a[i].x-a[k].x<a[j].x-a[i].x)
{
f[k][i]=max(f[k][i],tmp+a[k].y);
//cout<<k<<' '<<i<<' '<<tmp<<' '<<f[k][i]<<endl;
ans=max(ans,f[k][i]);
k--;
}
tmp=max(tmp,f[i][j]);
if(!k)break;
}
}
printf("%d\n",ans);
return ;
}

BZOJ3315: [Usaco2013 Nov]Pogo-Cow的更多相关文章

  1. Bzoj3315 [Usaco2013 Nov]Pogo-Cow(luogu3089)

    3315: [Usaco2013 Nov]Pogo-Cow Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 352  Solved: 181[Submit ...

  2. bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*

    bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...

  3. BZOJ 3315: [Usaco2013 Nov]Pogo-Cow( dp )

    我真想吐槽USACO的数据弱..= = O(n^3)都能A....上面一个是O(n²), 一个是O(n^3) O(n^3)做法, 先排序, dp(i, j) = max{ dp(j, p) } + w ...

  4. BZOJ3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 86  Solved: 61[Subm ...

  5. BZOJ 3314: [Usaco2013 Nov]Crowded Cows( 单调队列 )

    从左到右扫一遍, 维护一个单调不递减队列. 然后再从右往左重复一遍然后就可以统计答案了. ------------------------------------------------------- ...

  6. 3314: [Usaco2013 Nov]Crowded Cows

    3314: [Usaco2013 Nov]Crowded Cows Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 111  Solved: 79[Sub ...

  7. BZOJ1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 493  Solved: 2 ...

  8. 1640: [Usaco2007 Nov]Best Cow Line 队列变换

    1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 543  Solved: 2 ...

  9. 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分

    [BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...

随机推荐

  1. jquery trigger传值

    方法1: var e = $.Event('ok.menu.table', { relatedTarget: $el }) that.$el.trigger(e); 接受方法如下.此时,related ...

  2. C primer plus 读书笔记第六章和第七章

    这两章的标题是C控制语句:循环以及C控制语句:分支和跳转.之所以一起讲,是因为这两章内容都是讲控制语句. 第六章的第一段示例代码 /* summing.c --对用户输入的整数求和 */ #inclu ...

  3. ViewPager 详解(三)---PagerTabStrip与PagerTitleStrip添加标题栏的异同

    前言:在前两篇文章中,我们讲解了滑动页面的的实现方法与四大函数的意义,但有时,仅仅实现页面滑动是不够的,还要有标题栏才会显得更友好.所以在这篇文章中,我将会向大家展示在Android.support. ...

  4. TN2151:崩溃报告

    understanding and analyzing ios application crashreports 这个TN涉及了与崩溃相关的 内存耗尽信息,堆栈信息 以及 异常编号 等信息 内存耗尽 ...

  5. 大数据笔记04:大数据之Hadoop的HDFS(基本概念)

    1.HDFS是什么? Hadoop分布式文件系统(HDFS),被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点. 2.HDFS ...

  6. C# SqlHelper

    操作数据库时,经常会把常用的方法封装到一个类中,这里简单写了一个SQLHelper类,供我平时调用. public static class SqlHelper { private static re ...

  7. Avast注册以及更新

    昨天无聊在网上看Avast,然后下了玩. Avast有三种版本,免费版,网络版,高级版. 下了个高级版,在贴吧和论坛找激活码,发现大部分都没用,最后找了一个许可文件 关于Avast的注册,有在线和离线 ...

  8. MySQL慢查询详解

    分析MySQL语句查询性能的方法除了使用 EXPLAIN 输出执行计划,还可以让MySQL记录下查询超过指定时间的语句,我们将超过指定时间的SQL语句查询称为“慢查询”.   查看/设置“慢查询”的时 ...

  9. 1.1 语言与平台 [Java]

    Java语言是静态类型.面向对象的语言: Java平台是提供运行时环境的软件: 生产和使用Java代码的整个过程:.java (javac) .class (类加载器) 转换后的.class (解释器 ...

  10. 解决easyui datagrid加载数据时,checkbox列没有根据checkbox的值来确定是否选中

    背景:   昨天帮朋友做一个easyui datagrid的小实例时,才发现easyui datagrid的checkbox列,没有根据值为true或false来选中checkbox,当时感觉太让人失 ...