<转> 30 个有关 Python 的小技巧
目录[+]
- 1.1 拆箱
- 1.2 拆箱变量交换
- 1.3 扩展拆箱(只兼容python3)
- 1.4 负数索引
- 1.5 切割列表
- 1.6 负数索引切割列表
- 1.7指定步长切割列表
- 1.8 负数步长切割列表
- 1.9 列表切割赋值
- 1.10 命名列表切割方式
- 1.11 列表以及迭代器的压缩和解压缩
- 1.12 列表相邻元素压缩器
- 1.13 在列表中用压缩器和迭代器滑动取值窗口
- 1.14 用压缩器反转字典
- 1.15 列表展开
- 1.16 生成器表达式
- 1.17 字典推导
- 1.18 用字典推导反转字典
- 1.19 命名元组
- 1.20 继承命名元组
- 1.21 操作集合
- 1.22 操作多重集合
- 1.23 统计在可迭代器中最常出现的元素
- 1.24 两端都可操作的队列
- 1.25 有最大长度的双端队列
- 1.26 可排序词典
- 1.27 默认词典
- 1.28 默认字典的简单树状表达
- 1.29 对象到唯一计数的映射
- 1.30 最大和最小的几个列表元素
- 1.31 两个列表的笛卡尔积
- 1.32 列表组合和列表元素替代组合
- 1.33 列表元素排列组合
- 1.34 可链接迭代器
- 1.35 根据文件指定列类聚
- Refer:
从我开始学习python的时候,我就开始自己总结一个python小技巧的集合。后来当我什么时候在Stack Overflow
或者在某个开源软件里看到一段很酷代码的时候,我就很惊讶:原来还能这么做!,当时我会努力的自己尝试一下这段代码,直到我懂了它的整体思路以后,我就把这段代码加到我的集合里。这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧。而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样。
每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明。我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能难免有一些晦涩的地方。所以如果这些例子本身无法让你读懂,至少这个例子的标题在你后面去google搜索的时候会帮到你。
整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。
1.1 拆箱
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> a, b, c = 1 , 2 , 3 >>> a, b, c ( 1 , 2 , 3 ) >>> a, b, c = [ 1 , 2 , 3 ] >>> a, b, c ( 1 , 2 , 3 ) >>> a, b, c = ( 2 * i + 1 for i in range ( 3 )) >>> a, b, c ( 1 , 3 , 5 ) >>> a, (b, c), d = [ 1 , ( 2 , 3 ), 4 ] >>> a 1 >>> b 2 >>> c 3 >>> d 4 |
1.2 拆箱变量交换
1
2
3
4
|
>>> a, b = 1 , 2 >>> a, b = b, a >>> a, b ( 2 , 1 ) |
1.3 扩展拆箱(只兼容python3)
1
2
3
4
5
6
7
|
>>> a, * b, c = [ 1 , 2 , 3 , 4 , 5 ] >>> a 1 >>> b [ 2 , 3 , 4 ] >>> c 5 |
1.4 负数索引
1
2
3
4
5
|
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[ - 1 ] 10 >>> a[ - 3 ] 8 |
1.5 切割列表
1
2
3
|
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[ 2 : 8 ] [ 2 , 3 , 4 , 5 , 6 , 7 ] |
1.6 负数索引切割列表
1
2
3
|
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[ - 4 : - 2 ] [ 7 , 8 ] |
1.7指定步长切割列表
1
2
3
4
5
6
7
|
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[:: 2 ] [ 0 , 2 , 4 , 6 , 8 , 10 ] >>> a[:: 3 ] [ 0 , 3 , 6 , 9 ] >>> a[ 2 : 8 : 2 ] [ 2 , 4 , 6 ] |
1.8 负数步长切割列表
1
2
3
4
5
|
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] >>> a[:: - 1 ] [ 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 ] >>> a[:: - 2 ] [ 10 , 8 , 6 , 4 , 2 , 0 ] |
1.9 列表切割赋值
1
2
3
4
5
6
7
8
9
10
|
>>> a = [ 1 , 2 , 3 , 4 , 5 ] >>> a[ 2 : 3 ] = [ 0 , 0 ] >>> a [ 1 , 2 , 0 , 0 , 4 , 5 ] >>> a[ 1 : 1 ] = [ 8 , 9 ] >>> a [ 1 , 8 , 9 , 2 , 0 , 0 , 4 , 5 ] >>> a[ 1 : - 1 ] = [] >>> a [ 1 , 5 ] |
1.10 命名列表切割方式
1
2
3
4
5
6
|
>>> a = [ 0 , 1 , 2 , 3 , 4 , 5 ] >>> LASTTHREE = slice ( - 3 , None ) >>> LASTTHREE slice ( - 3 , None , None ) >>> a[LASTTHREE] [ 3 , 4 , 5 ] |
1.11 列表以及迭代器的压缩和解压缩
1
2
3
4
5
6
7
|
>>> a = [ 1 , 2 , 3 ] >>> b = [ 'a' , 'b' , 'c' ] >>> z = zip (a, b) >>> z [( 1 , 'a' ), ( 2 , 'b' ), ( 3 , 'c' )] >>> zip ( * z) [( 1 , 2 , 3 ), ( 'a' , 'b' , 'c' )] |
1.12 列表相邻元素压缩器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
>>> a = [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> zip ( * ([ iter (a)] * 2 )) [( 1 , 2 ), ( 3 , 4 ), ( 5 , 6 )] >>> group_adjacent = lambda a, k: zip ( * ([ iter (a)] * k)) >>> group_adjacent(a, 3 ) [( 1 , 2 , 3 ), ( 4 , 5 , 6 )] >>> group_adjacent(a, 2 ) [( 1 , 2 ), ( 3 , 4 ), ( 5 , 6 )] >>> group_adjacent(a, 1 ) [( 1 ,), ( 2 ,), ( 3 ,), ( 4 ,), ( 5 ,), ( 6 ,)] >>> zip (a[:: 2 ], a[ 1 :: 2 ]) [( 1 , 2 ), ( 3 , 4 ), ( 5 , 6 )] >>> zip (a[:: 3 ], a[ 1 :: 3 ], a[ 2 :: 3 ]) [( 1 , 2 , 3 ), ( 4 , 5 , 6 )] >>> group_adjacent = lambda a, k: zip ( * (a[i::k] for i in range (k))) >>> group_adjacent(a, 3 ) [( 1 , 2 , 3 ), ( 4 , 5 , 6 )] >>> group_adjacent(a, 2 ) [( 1 , 2 ), ( 3 , 4 ), ( 5 , 6 )] >>> group_adjacent(a, 1 ) [( 1 ,), ( 2 ,), ( 3 ,), ( 4 ,), ( 5 ,), ( 6 ,)] |
1.13 在列表中用压缩器和迭代器滑动取值窗口
1
2
3
4
5
6
7
8
9
10
11
|
>>> def n_grams(a, n): ... z = [ iter (a[i:]) for i in range (n)] ... return zip ( * z) ... >>> a = [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> n_grams(a, 3 ) [( 1 , 2 , 3 ), ( 2 , 3 , 4 ), ( 3 , 4 , 5 ), ( 4 , 5 , 6 )] >>> n_grams(a, 2 ) [( 1 , 2 ), ( 2 , 3 ), ( 3 , 4 ), ( 4 , 5 ), ( 5 , 6 )] >>> n_grams(a, 4 ) [( 1 , 2 , 3 , 4 ), ( 2 , 3 , 4 , 5 ), ( 3 , 4 , 5 , 6 )] |
1.14 用压缩器反转字典
1
2
3
4
5
6
7
8
|
>>> m = { 'a' : 1 , 'b' : 2 , 'c' : 3 , 'd' : 4 } >>> m.items() [( 'a' , 1 ), ( 'c' , 3 ), ( 'b' , 2 ), ( 'd' , 4 )] >>> zip (m.values(), m.keys()) [( 1 , 'a' ), ( 3 , 'c' ), ( 2 , 'b' ), ( 4 , 'd' )] >>> mi = dict ( zip (m.values(), m.keys())) >>> mi { 1 : 'a' , 2 : 'b' , 3 : 'c' , 4 : 'd' } |
1.15 列表展开
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> a = [[ 1 , 2 ], [ 3 , 4 ], [ 5 , 6 ]] >>> list (itertools.chain.from_iterable(a)) [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> sum (a, []) [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> [x for l in a for x in l] [ 1 , 2 , 3 , 4 , 5 , 6 ] >>> a = [[[ 1 , 2 ], [ 3 , 4 ]], [[ 5 , 6 ], [ 7 , 8 ]]] >>> [x for l1 in a for l2 in l1 for x in l2] [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] >>> a = [ 1 , 2 , [ 3 , 4 ], [[ 5 , 6 ], [ 7 , 8 ]]] >>> flatten = lambda x: [y for l in x for y in flatten(l)] if type (x) is list else [x] >>> flatten(a) [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ] |
1.16 生成器表达式
1
2
3
4
5
6
7
8
9
10
11
12
13
|
>>> g = (x * * 2 for x in xrange ( 10 )) >>> next (g) 0 >>> next (g) 1 >>> next (g) 4 >>> next (g) 9 >>> sum (x * * 3 for x in xrange ( 10 )) 2025 >>> sum (x * * 3 for x in xrange ( 10 ) if x % 3 = = 1 ) 408 |
1.17 字典推导
1
2
3
4
5
6
7
|
>>> m = {x: x * * 2 for x in range ( 5 )} >>> m { 0 : 0 , 1 : 1 , 2 : 4 , 3 : 9 , 4 : 16 } >>> m = {x: 'A' + str (x) for x in range ( 10 )} >>> m { 0 : 'A0' , 1 : 'A1' , 2 : 'A2' , 3 : 'A3' , 4 : 'A4' , 5 : 'A5' , 6 : 'A6' , 7 : 'A7' , 8 : 'A8' , 9 : 'A9' } |
1.18 用字典推导反转字典
1
2
3
4
5
|
>>> m = { 'a' : 1 , 'b' : 2 , 'c' : 3 , 'd' : 4 } >>> m { 'd' : 4 , 'a' : 1 , 'b' : 2 , 'c' : 3 } >>> {v: k for k, v in m.items()} { 1 : 'a' , 2 : 'b' , 3 : 'c' , 4 : 'd' } |
1.19 命名元组
1
2
3
4
5
6
7
8
|
>>> Point = collections.namedtuple( 'Point' , [ 'x' , 'y' ]) >>> p = Point(x = 1.0 , y = 2.0 ) >>> p Point(x = 1.0 , y = 2.0 ) >>> p.x 1.0 >>> p.y 2.0 |
1.20 继承命名元组
1
2
3
4
5
6
7
8
9
|
>>> class Point(collections.namedtuple( 'PointBase' , [ 'x' , 'y' ])): ... __slots__ = () ... def __add__( self , other): ... return Point(x = self .x + other.x, y = self .y + other.y) ... >>> p = Point(x = 1.0 , y = 2.0 ) >>> q = Point(x = 2.0 , y = 3.0 ) >>> p + q Point(x = 3.0 , y = 5.0 ) |
1.21 操作集合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> A = { 1 , 2 , 3 , 3 } >>> A set ([ 1 , 2 , 3 ]) >>> B = { 3 , 4 , 5 , 6 , 7 } >>> B set ([ 3 , 4 , 5 , 6 , 7 ]) >>> A | B set ([ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]) >>> A & B set ([ 3 ]) >>> A - B set ([ 1 , 2 ]) >>> B - A set ([ 4 , 5 , 6 , 7 ]) >>> A ^ B set ([ 1 , 2 , 4 , 5 , 6 , 7 ]) >>> (A ^ B) = = ((A - B) | (B - A)) True |
1.22 操作多重集合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
>>> A = collections.Counter([ 1 , 2 , 2 ]) >>> B = collections.Counter([ 2 , 2 , 3 ]) >>> A Counter({ 2 : 2 , 1 : 1 }) >>> B Counter({ 2 : 2 , 3 : 1 }) >>> A | B Counter({ 2 : 2 , 1 : 1 , 3 : 1 }) >>> A & B Counter({ 2 : 2 }) >>> A + B Counter({ 2 : 4 , 1 : 1 , 3 : 1 }) >>> A - B Counter({ 1 : 1 }) >>> B - A Counter({ 3 : 1 }) |
1.23 统计在可迭代器中最常出现的元素
1
2
3
4
5
6
7
|
>>> A = collections.Counter([ 1 , 1 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , 5 , 6 , 7 ]) >>> A Counter({ 3 : 4 , 1 : 2 , 2 : 2 , 4 : 1 , 5 : 1 , 6 : 1 , 7 : 1 }) >>> A.most_common( 1 ) [( 3 , 4 )] >>> A.most_common( 3 ) [( 3 , 4 ), ( 1 , 2 ), ( 2 , 2 )] |
1.24 两端都可操作的队列
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
>>> Q = collections.deque() >>> Q.append( 1 ) >>> Q.appendleft( 2 ) >>> Q.extend([ 3 , 4 ]) >>> Q.extendleft([ 5 , 6 ]) >>> Q deque([ 6 , 5 , 2 , 1 , 3 , 4 ]) >>> Q.pop() 4 >>> Q.popleft() 6 >>> Q deque([ 5 , 2 , 1 , 3 ]) >>> Q.rotate( 3 ) >>> Q deque([ 2 , 1 , 3 , 5 ]) >>> Q.rotate( - 3 ) >>> Q deque([ 5 , 2 , 1 , 3 ]) |
1.25 有最大长度的双端队列
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
>>> last_three = collections.deque(maxlen = 3 ) >>> for i in xrange ( 10 ): ... last_three.append(i) ... print ', ' .join( str (x) for x in last_three) ... 0 0 , 1 0 , 1 , 2 1 , 2 , 3 2 , 3 , 4 3 , 4 , 5 4 , 5 , 6 5 , 6 , 7 6 , 7 , 8 7 , 8 , 9 |
1.26 可排序词典
1
2
3
4
5
6
7
8
9
|
>>> m = dict (( str (x), x) for x in range ( 10 )) >>> print ', ' .join(m.keys()) 1 , 0 , 3 , 2 , 5 , 4 , 7 , 6 , 9 , 8 >>> m = collections.OrderedDict(( str (x), x) for x in range ( 10 )) >>> print ', ' .join(m.keys()) 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 >>> m = collections.OrderedDict(( str (x), x) for x in range ( 10 , 0 , - 1 )) >>> print ', ' .join(m.keys()) 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 |
1.27 默认词典
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
>>> m = dict () >>> m[ 'a' ] Traceback (most recent call last): File "<stdin>" , line 1 , in <module> KeyError: 'a' >>> >>> m = collections.defaultdict( int ) >>> m[ 'a' ] 0 >>> m[ 'b' ] 0 >>> m = collections.defaultdict( str ) >>> m[ 'a' ] '' >>> m[ 'b' ] + = 'a' >>> m[ 'b' ] 'a' >>> m = collections.defaultdict( lambda : '[default value]' ) >>> m[ 'a' ] '[default value]' >>> m[ 'b' ] '[default value]' |
1.28 默认字典的简单树状表达
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
>>> import json >>> tree = lambda : collections.defaultdict(tree) >>> root = tree() >>> root[ 'menu' ][ 'id' ] = 'file' >>> root[ 'menu' ][ 'value' ] = 'File' >>> root[ 'menu' ][ 'menuitems' ][ 'new' ][ 'value' ] = 'New' >>> root[ 'menu' ][ 'menuitems' ][ 'new' ][ 'onclick' ] = 'new();' >>> root[ 'menu' ][ 'menuitems' ][ 'open' ][ 'value' ] = 'Open' >>> root[ 'menu' ][ 'menuitems' ][ 'open' ][ 'onclick' ] = 'open();' >>> root[ 'menu' ][ 'menuitems' ][ 'close' ][ 'value' ] = 'Close' >>> root[ 'menu' ][ 'menuitems' ][ 'close' ][ 'onclick' ] = 'close();' >>> print json.dumps(root, sort_keys = True , indent = 4 , separators = ( ',' , ': ' )) { "menu" : { "id" : "file" , "menuitems" : { "close" : { "onclick" : "close();" , "value" : "Close" }, "new" : { "onclick" : "new();" , "value" : "New" }, "open" : { "onclick" : "open();" , "value" : "Open" } }, "value" : "File" } } |
1.29 对象到唯一计数的映射
1
2
3
4
5
6
7
8
9
10
11
12
|
>>> import itertools, collections >>> value_to_numeric_map = collections.defaultdict(itertools.count(). next ) >>> value_to_numeric_map[ 'a' ] 0 >>> value_to_numeric_map[ 'b' ] 1 >>> value_to_numeric_map[ 'c' ] 2 >>> value_to_numeric_map[ 'a' ] 0 >>> value_to_numeric_map[ 'b' ] 1 |
1.30 最大和最小的几个列表元素
1
2
3
4
5
|
>>> a = [random.randint( 0 , 100 ) for __ in xrange ( 100 )] >>> heapq.nsmallest( 5 , a) [ 3 , 3 , 5 , 6 , 8 ] >>> heapq.nlargest( 5 , a) [ 100 , 100 , 99 , 98 , 98 ] |
1.31 两个列表的笛卡尔积
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
>>> for p in itertools.product([ 1 , 2 , 3 ], [ 4 , 5 ]): ( 1 , 4 ) ( 1 , 5 ) ( 2 , 4 ) ( 2 , 5 ) ( 3 , 4 ) ( 3 , 5 ) >>> for p in itertools.product([ 0 , 1 ], repeat = 4 ): ... print ''.join( str (x) for x in p) ... 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 |
1.32 列表组合和列表元素替代组合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
>>> for c in itertools.combinations([ 1 , 2 , 3 , 4 , 5 ], 3 ): ... print ''.join( str (x) for x in c) ... 123 124 125 134 135 145 234 235 245 345 >>> for c in itertools.combinations_with_replacement([ 1 , 2 , 3 ], 2 ): ... print ''.join( str (x) for x in c) ... 11 12 13 22 23 33 |
1.33 列表元素排列组合
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
>>> for p in itertools.permutations([ 1 , 2 , 3 , 4 ]): ... print ''.join( str (x) for x in p) ... 1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321 |
1.34 可链接迭代器
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
>>> a = [ 1 , 2 , 3 , 4 ] >>> for p in itertools.chain(itertools.combinations(a, 2 ), itertools.combinations(a, 3 )): ... print p ... ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 2 , 3 ) ( 2 , 4 ) ( 3 , 4 ) ( 1 , 2 , 3 ) ( 1 , 2 , 4 ) ( 1 , 3 , 4 ) ( 2 , 3 , 4 ) >>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range ( len (a) + 1 )) ... print subset ... () ( 1 ,) ( 2 ,) ( 3 ,) ( 4 ,) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 2 , 3 ) ( 2 , 4 ) ( 3 , 4 ) ( 1 , 2 , 3 ) ( 1 , 2 , 4 ) ( 1 , 3 , 4 ) ( 2 , 3 , 4 ) ( 1 , 2 , 3 , 4 ) |
1.35 根据文件指定列类聚
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
>>> import itertools >>> with open ( 'contactlenses.csv' , 'r' ) as infile: ... data = [line.strip().split( ',' ) for line in infile] ... >>> data = data[ 1 :] >>> def print_data(rows): ... print '\n' .join( '\t' .join( '{: <16}' . format (s) for s in row) for row in rows) ... >>> print_data(data) young myope no reduced none young myope no normal soft young myope yes reduced none young myope yes normal hard young hypermetrope no reduced none young hypermetrope no normal soft young hypermetrope yes reduced none young hypermetrope yes normal hard pre - presbyopic myope no reduced none pre - presbyopic myope no normal soft pre - presbyopic myope yes reduced none pre - presbyopic myope yes normal hard pre - presbyopic hypermetrope no reduced none pre - presbyopic hypermetrope no normal soft pre - presbyopic hypermetrope yes reduced none pre - presbyopic hypermetrope yes normal none presbyopic myope no reduced none presbyopic myope no normal none presbyopic myope yes reduced none presbyopic myope yes normal hard presbyopic hypermetrope no reduced none presbyopic hypermetrope no normal soft presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes normal none >>> data.sort(key = lambda r: r[ - 1 ]) >>> for value, group in itertools.groupby(data, lambda r: r[ - 1 ]): ... print '-----------' ... print 'Group: ' + value ... print_data(group) ... - - - - - - - - - - - Group: hard young myope yes normal hard young hypermetrope yes normal hard pre - presbyopic myope yes normal hard presbyopic myope yes normal hard - - - - - - - - - - - Group: none young myope no reduced none young myope yes reduced none young hypermetrope no reduced none young hypermetrope yes reduced none pre - presbyopic myope no reduced none pre - presbyopic myope yes reduced none pre - presbyopic hypermetrope no reduced none pre - presbyopic hypermetrope yes reduced none pre - presbyopic hypermetrope yes normal none presbyopic myope no reduced none presbyopic myope no normal none presbyopic myope yes reduced none presbyopic hypermetrope no reduced none presbyopic hypermetrope yes reduced none presbyopic hypermetrope yes normal none - - - - - - - - - - - Group: soft young myope no normal soft young hypermetrope no normal soft pre - presbyopic myope no normal soft pre - presbyopic hypermetrope no normal soft presbyopic hypermetrope no normal |
Refer:
[1] Python的优雅技巧
http://segmentfault.com/a/1190000002869103
[2] stackoverflow-py-top-qa
https://github.com/wklken/stackoverflow-py-top-qa/blob/master/contents/qa-string.md
<转> 30 个有关 Python 的小技巧的更多相关文章
- 30个有关Python的小技巧,给程序员的 30 个基本 Python 贴士与技巧
30个有关Python的小技巧 2013/07/04 · Python, 开发 · 4 评论 · Python 分享到: 66 本文由 伯乐在线 - Kevin Sun 翻译.未经许可,禁止转载!英文 ...
- 30个有关Python的小技巧
从我开始学习python的时候,我就开始自己总结一个python小技巧的集合.后来当我什么时候在Stack Overflow或者在某个开源软件里看到一段很酷代码的时候,我就很惊讶:原来还能这么做!,当 ...
- Python学习小技巧之列表项的排序
Python学习小技巧之列表项的排序 本文介绍的是关于Python列表项排序的相关内容,分享出来供大家参考学习,下面来看看详细的介绍: 典型代码1: data_list = [6, 9, 1, ...
- Python编码小技巧分享【新手必学】
本次分享了python编程小技巧总结如下,希望对大家有帮助,非常实用哦注意:很多人学Python过程中会遇到各种烦恼问题,没有人帮答疑.为此小编建了个Python全栈免费答疑交流.裙 :一久武其 ...
- Python(^^^^^小技巧^^^^^——不定期更新)
偶然想到的小技巧 ''' 交互中对传入函数的参数的数目进行检测 ''' def func(a,b,c): print(a,b,c) s=input(">>>>:&qu ...
- Python Requests 小技巧总结
关于 Python Requests ,在使用中,总结了一些小技巧把,分享下. 1:保持请求之间的Cookies,我们可以这样做. import requests self.session = req ...
- python debug小技巧&&工程能力的几点建议
Debug小技巧: 转载请声明本文的引用出处:仰望大牛的小清新 1.初次编程时,在每一个if后面都写上else,这样,如果你的else原本是不应该运行的,那么就可以在else中输出此时的状态信息便于排 ...
- python 实用小技巧
1. 列表 #以下三式等价 c = (a>b and a or b) c = a if a>b else b c = [b, a][a>b] 字符串拼接 ' + '.join('%s ...
- python实用小技巧自问自答系列(一):查看类中函数文档doc的方法
问题:如何查看某个类的方法文档说明或者是函数的参数列表情况? 答: 方法一:直接在需要查询的方法后面加上".__doc__"即可以打印出该方法的文档说明(需要先导入该方法所属模块) ...
随机推荐
- linux下安装PHP的redis扩展
1.安装redis ①下载:https://github.com/phpredis/phpredis.git ②cd phpredis 进入目录 ③/usr/local/php/bin/phpiz ...
- Python之三层菜单
三层菜单,根据用户所选数字,进入子菜单.一级一级呈现. menu = { 'Beijing': { "ChaoYang": { "CBD": ['CICC', ...
- Loadrunner11点击录制脚本无响应,IE页面弹不出——解决方案汇总
以前用Loadrunner的时候都没有遇到过这个问题,后来将服务器重装系统(win7)后,重新安装Loadrunner11,浏览器版本刚开始为IE11,后来降为IE8,IE访问部署在虚拟机里的平台能正 ...
- C单链表实现
/* * LinkNode.c * * Created on: Jan 14, 2014 * Author: root */ #include <stdlib.h> #include &l ...
- Asp.net Role manager tutorial
It is very useful in .net we can user framework provided role manager, and easily configure in Web.C ...
- mybatis一对一关联表查询
先创建一个表 CREATE TABLE teacher( t_id INT PRIMARY KEY AUTO_INCREMENT, t_name ) ); CREATE TABLE class( c_ ...
- golang并发编程
golang并发编程 引子 golang提供了goroutine快速实现并发编程,在实际环境中,如果goroutine中的代码要消耗大量资源时(CPU.内存.带宽等),我们就需要对程序限速,以防止go ...
- Understanding and Selecting a SIEM/LM: Correlation and Alerting
Continuing our discussion of core SIEM and Log Management technology, we now move into event correla ...
- python(进程池/线程池)
进程池 import multiprocessing import time def do_calculation(data): print(multiprocessing.current_proce ...
- [置顶] Asp.Net底层原理(二、写自己的Asp.Net框架)
我们介绍过了浏览器和服务器之间的交互过程,接下来介绍Asp.net处理动态请求. 写自己的Asp.Net框架,我们不会引用System.Web这个程序集,我们只需要创建要给自己的类库,所以在接下来的程 ...