MapReduce流程、如何统计任务数目以及Partitioner
核心功能描述
应用程序通常会通过提供map和reduce来实现 Mapper和Reducer接口,它们组成作业的核心。
Map是一类将输入记录集转换为中间格式记录集的独立任务。 这种转换的中间格式记录集不需要与输入记录集的类型一致。一个给定的输入键值对可以映射成0个或多个输出键值对。Hadoop Map/Reduce框架为每一个InputSplit产生一个map任务,而每个InputSplit是由该作业的InputFormat产生的。
什么是InputSplit?InputSplit是指分片,在MapReduce当中作业中,作为map task最小输入单位。分片是基于文件基础上出来的而来的概念,通俗的理解一个文件可以切分为多少个片段,每个片段包括了<文件名,开始位置,长度,位于哪些主机>等信息。在MapTask拿到这些分片后,会知道从哪开始读取数据。(http://blog.csdn.net/chlaws/article/details/22900141)
Mapper的输出被排序后,就被划分给每个Reducer。分块的总数目和一个作业的reduce任务的数目是一样的。用户可以通过实现自定义的 Partitioner来控制哪个key被分配给哪个Reducer。
用户可选择通过JobConf.setCombinerClass(Class)指定一个combiner,它负责对中间过程的输出进行本地的聚集,这会有助于降低从Mapper到 Reducer数据传输量。这些被排好序的中间过程的输出结果保存的格式是(key-len, key, value-len, value),应用程序可以通过JobConf控制对这些中间结果是否进行压缩以及怎么压缩,使用哪种CompressionCodec。
需要多少个Map?
Map的数目通常是由输入数据的大小决定的,一般就是所有输入文件的总块(block)数。
Map正常的并行规模大致是每个节点(node)大约10到100个map,对于CPU 消耗较小的map任务可以设到300个左右。由于每个任务初始化需要一定的时间,因此,比较合理的情况是map执行的时间至少超过1分钟。
这样,如果你输入10TB的数据,每个块(block)的大小是128MB,你将需要大约82,000个map来完成任务,除非使用 setNumMapTasks(int)将这个数值设置得更高。
Reducer
Reducer将与一个key关联的一组中间数值集归约(reduce)为一个更小的数值集。用户可以通过JobConf.setNumReduceTasks(int)设定一个作业中reduce任务的数目。
Reducer有3个主要阶段:shuffle、sort和reduce。
Shuffle
Reducer的输入就是Mapper已经排好序的输出。在这个阶段,框架通过HTTP为每个Reducer获得所有Mapper输出中与之相关的分块。
Sort
这个阶段,框架将按照key的值对Reducer的输入进行分组 (因为不同mapper的输出中可能会有相同的key)。Shuffle和Sort两个阶段是同时进行的;map的输出也是一边被取回一边被合并的。
Secondary Sort
如果需要中间过程对key的分组规则和reduce前对key的分组规则不同,那么可以通过JobConf.setOutputValueGroupingComparator(Class)来指定一个Comparator。再加上JobConf.setOutputKeyComparatorClass(Class)可用于控制中间过程的key如何被分组,所以结合两者可以实现按值的二次排序。
Reduce
在这个阶段,框架为已分组的输入数据中的每个 <key, (list of values)>对调用一次 reduce(WritableComparable, Iterator, OutputCollector, Reporter)方法。
Reduce任务的输出通常是通过调用 OutputCollector.collect(WritableComparable, Writable)写入 文件系统的。应用程序可以使用Reporter报告进度,设定应用程序级别的状态消息,更新Counters(计数器),或者仅是表明自己运行正常。Reducer的输出是没有排序的。
需要多少个Reduce?
Reduce的数目建议是0.95或1.75乘以 (<no. of nodes> * mapred.tasktracker.reduce.tasks.maximum)。用0.95,所有reduce可以在maps一完成时就立刻启动,开始传输map的输出结果。用1.75,速度快的节点可以在完成第一轮reduce任务后,可以开始第二轮,这样可以得到比较好的负载均衡的效果。增加reduce的数目会增加整个框架的开销,但可以改善负载均衡,降低由于执行失败带来的负面影响。
上述比例因子比整体数目稍小一些是为了给框架中的推测性任务(speculative-tasks) 或失败的任务预留一些reduce的资源。
无Reducer
如果没有归约要进行,那么设置reduce任务的数目为零是合法的。
这种情况下,map任务的输出会直接被写入由 setOutputPath(Path)指定的输出路径。框架在把它们写入FileSystem之前没有对它们进行排序。
Partitioner
Partitioner用于划分键值空间(key space)。
Partitioner负责控制map输出结果key的分割。Key(或者一个key子集)被用于产生分区,通常使用的是Hash函数。分区的数目与一个作业的reduce任务的数目是一样的。因此,它控制将中间过程的key(也就是这条记录)应该发送给m个reduce任务中的哪一个来进行reduce操作。HashPartitioner是默认的 Partitioner。
MapReduce流程、如何统计任务数目以及Partitioner的更多相关文章
- Hadoop 综合揭秘——MapReduce 基础编程(介绍 Combine、Partitioner、WritableComparable、WritableComparator 使用方式)
前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开 ...
- MapReduce实战:统计不同工作年限的薪资水平
1.薪资数据集 我们要写一个薪资统计程序,统计数据来自于互联网招聘hadoop岗位的招聘网站,这些数据是按照记录方式存储的,因此非常适合使用 MapReduce 程序来统计. 2.数据格式 我们使用的 ...
- Hadoop之MapReduce流程
hadoopMapReduce 1. MapReduce流程 2. Shuffle流程 1. MapReduce流程 MapReduce流程 切片: 对数据进行逻辑划分,默认大小是一个block块大小 ...
- MapReduce案例:统计共同好友+订单表多表合并+求每个订单中最贵的商品
案例三: 统计共同好友 任务需求: 如下的文本, A:B,C,D,F,E,OB:A,C,E,KC:F,A,D,ID:A,E,F,LE:B,C,D,M,LF:A,B,C,D,E,O,MG:A,C,D,E ...
- Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况
mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
- mapreduce流程中的几个关键点
MapReduce中数据流动 (1)最简单的过程: map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partiti ...
- MapReduce最佳成绩统计,男生女生比比看
上一篇文章我们了解了MapReduce优化方面的知识,现在我们通过简单的项目,学会如何优化MapReduce性能 1.项目介绍 我们使用简单的成绩数据集,统计出0~20.20~50.50~100这三个 ...
- 分析MapReduce执行过程+统计单词数例子
MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer 任务会接收 Mapper 任务输出的数据,作为自己 ...
随机推荐
- guestmount
guestmountFor some types of changes, you may find it easier to mount the image's file system directl ...
- canvas生成遮罩图片
首先我们知道css3中增加了不少好用.好玩的css3样式可以使用.今天我们要说到是遮罩. 它的使用方式也不复杂,和background使用方式差不多.使用mask-image就 ...
- 【转】windows下vs2008/2010+opencv2.2开发环境搭建
版权声明:本文为博主原创文章,未经博主允许不得转载. 1.下载安装Cmake 2.用cmake配置opencv2.2,然后编译,安装 3. 在vs2008中配置opencv2.2 4.Demo 1.下 ...
- Python 2 到 Python 3的变化
Python 2.x到Python 3.x变化还是挺大的,具体的变化,参考官方文档: https://docs.python.org/3.0/whatsnew/3.0.html
- Linux + Apache + MySql+ Php 配置虚拟主机
win7:------------------------------------------------------------------------ NameVirtualHost *:80&l ...
- iTunes备份文件路径
Windows 7 电脑:C:\Users\使用者名称\AppData\Roaming\Apple Computer\MobileSync\Backup XP 电脑:C:\Documents and ...
- POJ 3356 AGTC(最小编辑距离)
POJ 3356 AGTC(最小编辑距离) http://poj.org/problem?id=3356 题意: 给出两个字符串x 与 y,当中x的长度为n,y的长度为m,而且m>=n.然后y能 ...
- MySQL数据库的环境及简单操作
***********************************************声明*************************************************** ...
- 通过数组初始化链表的两种方法:指向指针的引用node *&tail和指向指针的指针(二维指针)node **tail
面试高频题:单链表的逆置操作/链表逆序相关文章 点击打开 void init_node(node *tail,char *init_array) 这样声明函数是不正确的,函数的原意是通过数组初始化链表 ...
- sqlserver,执行生成脚本时“引发类型为“System.OutOfMemoryException”的异常”(已解决)
sqlserver,执行生成脚本时“引发类型为“System.OutOfMemoryException”的异常”(已解决) 出现此错误主要是因为.sql的脚本文件过大(一般都超过100M)造成内存无法 ...