MapReduce流程、如何统计任务数目以及Partitioner
核心功能描述
应用程序通常会通过提供map和reduce来实现 Mapper和Reducer接口,它们组成作业的核心。
Map是一类将输入记录集转换为中间格式记录集的独立任务。 这种转换的中间格式记录集不需要与输入记录集的类型一致。一个给定的输入键值对可以映射成0个或多个输出键值对。Hadoop Map/Reduce框架为每一个InputSplit产生一个map任务,而每个InputSplit是由该作业的InputFormat产生的。
什么是InputSplit?InputSplit是指分片,在MapReduce当中作业中,作为map task最小输入单位。分片是基于文件基础上出来的而来的概念,通俗的理解一个文件可以切分为多少个片段,每个片段包括了<文件名,开始位置,长度,位于哪些主机>等信息。在MapTask拿到这些分片后,会知道从哪开始读取数据。(http://blog.csdn.net/chlaws/article/details/22900141)
Mapper的输出被排序后,就被划分给每个Reducer。分块的总数目和一个作业的reduce任务的数目是一样的。用户可以通过实现自定义的 Partitioner来控制哪个key被分配给哪个Reducer。
用户可选择通过JobConf.setCombinerClass(Class)指定一个combiner,它负责对中间过程的输出进行本地的聚集,这会有助于降低从Mapper到 Reducer数据传输量。这些被排好序的中间过程的输出结果保存的格式是(key-len, key, value-len, value),应用程序可以通过JobConf控制对这些中间结果是否进行压缩以及怎么压缩,使用哪种CompressionCodec。
需要多少个Map?
Map的数目通常是由输入数据的大小决定的,一般就是所有输入文件的总块(block)数。
Map正常的并行规模大致是每个节点(node)大约10到100个map,对于CPU 消耗较小的map任务可以设到300个左右。由于每个任务初始化需要一定的时间,因此,比较合理的情况是map执行的时间至少超过1分钟。
这样,如果你输入10TB的数据,每个块(block)的大小是128MB,你将需要大约82,000个map来完成任务,除非使用 setNumMapTasks(int)将这个数值设置得更高。
Reducer
Reducer将与一个key关联的一组中间数值集归约(reduce)为一个更小的数值集。用户可以通过JobConf.setNumReduceTasks(int)设定一个作业中reduce任务的数目。
Reducer有3个主要阶段:shuffle、sort和reduce。
Shuffle
Reducer的输入就是Mapper已经排好序的输出。在这个阶段,框架通过HTTP为每个Reducer获得所有Mapper输出中与之相关的分块。
Sort
这个阶段,框架将按照key的值对Reducer的输入进行分组 (因为不同mapper的输出中可能会有相同的key)。Shuffle和Sort两个阶段是同时进行的;map的输出也是一边被取回一边被合并的。
Secondary Sort
如果需要中间过程对key的分组规则和reduce前对key的分组规则不同,那么可以通过JobConf.setOutputValueGroupingComparator(Class)来指定一个Comparator。再加上JobConf.setOutputKeyComparatorClass(Class)可用于控制中间过程的key如何被分组,所以结合两者可以实现按值的二次排序。
Reduce
在这个阶段,框架为已分组的输入数据中的每个 <key, (list of values)>对调用一次 reduce(WritableComparable, Iterator, OutputCollector, Reporter)方法。
Reduce任务的输出通常是通过调用 OutputCollector.collect(WritableComparable, Writable)写入 文件系统的。应用程序可以使用Reporter报告进度,设定应用程序级别的状态消息,更新Counters(计数器),或者仅是表明自己运行正常。Reducer的输出是没有排序的。
需要多少个Reduce?
Reduce的数目建议是0.95或1.75乘以 (<no. of nodes> * mapred.tasktracker.reduce.tasks.maximum)。用0.95,所有reduce可以在maps一完成时就立刻启动,开始传输map的输出结果。用1.75,速度快的节点可以在完成第一轮reduce任务后,可以开始第二轮,这样可以得到比较好的负载均衡的效果。增加reduce的数目会增加整个框架的开销,但可以改善负载均衡,降低由于执行失败带来的负面影响。
上述比例因子比整体数目稍小一些是为了给框架中的推测性任务(speculative-tasks) 或失败的任务预留一些reduce的资源。
无Reducer
如果没有归约要进行,那么设置reduce任务的数目为零是合法的。
这种情况下,map任务的输出会直接被写入由 setOutputPath(Path)指定的输出路径。框架在把它们写入FileSystem之前没有对它们进行排序。
Partitioner
Partitioner用于划分键值空间(key space)。
Partitioner负责控制map输出结果key的分割。Key(或者一个key子集)被用于产生分区,通常使用的是Hash函数。分区的数目与一个作业的reduce任务的数目是一样的。因此,它控制将中间过程的key(也就是这条记录)应该发送给m个reduce任务中的哪一个来进行reduce操作。HashPartitioner是默认的 Partitioner。
MapReduce流程、如何统计任务数目以及Partitioner的更多相关文章
- Hadoop 综合揭秘——MapReduce 基础编程(介绍 Combine、Partitioner、WritableComparable、WritableComparator 使用方式)
前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开 ...
- MapReduce实战:统计不同工作年限的薪资水平
1.薪资数据集 我们要写一个薪资统计程序,统计数据来自于互联网招聘hadoop岗位的招聘网站,这些数据是按照记录方式存储的,因此非常适合使用 MapReduce 程序来统计. 2.数据格式 我们使用的 ...
- Hadoop之MapReduce流程
hadoopMapReduce 1. MapReduce流程 2. Shuffle流程 1. MapReduce流程 MapReduce流程 切片: 对数据进行逻辑划分,默认大小是一个block块大小 ...
- MapReduce案例:统计共同好友+订单表多表合并+求每个订单中最贵的商品
案例三: 统计共同好友 任务需求: 如下的文本, A:B,C,D,F,E,OB:A,C,E,KC:F,A,D,ID:A,E,F,LE:B,C,D,M,LF:A,B,C,D,E,O,MG:A,C,D,E ...
- Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况
mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...
- Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...
- mapreduce流程中的几个关键点
MapReduce中数据流动 (1)最简单的过程: map - reduce (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partiti ...
- MapReduce最佳成绩统计,男生女生比比看
上一篇文章我们了解了MapReduce优化方面的知识,现在我们通过简单的项目,学会如何优化MapReduce性能 1.项目介绍 我们使用简单的成绩数据集,统计出0~20.20~50.50~100这三个 ...
- 分析MapReduce执行过程+统计单词数例子
MapReduce 运行的时候,会通过 Mapper 运行的任务读取 HDFS 中的数据文件,然后调用自己的方法,处理数据,最后输出.Reducer 任务会接收 Mapper 任务输出的数据,作为自己 ...
随机推荐
- 寻访上海西服定制店_Enjoy·雅趣频道_财新网
寻访上海西服定制店_Enjoy·雅趣频道_财新网 寻访上海西服定制店
- iOS- UITableView could not hold the selected row after reload
I like stackoverflow.. Answer : http://stackoverflow.com/questions/6649202/uitableview-doesnt-keep-r ...
- servlet过滤器配置白名单、黑名单
1.web.xml配置 <filter> <description>过滤是否登陆</description> <filter-name>encoding ...
- hdu 4841 圆桌问题(STL vector)
Problem Description 圆桌上围坐着2n个人.其中n个人是好人,另外n个人是坏人.如果从第一个人开始数数,数到第m个人,则立即处死该人:然后从被处死的人之后开始数数,再将数到的第m个人 ...
- PHP的输出缓冲区
什么是缓冲区?简单而言,缓冲区的作用就是,把输入或者输出的内容先放进内存,而不显示或者读取.至于为什么要有缓冲区,这是一个很广泛的问题,如果有兴趣,可以在网山找下资料.其实缓冲区最本质的作用就是,协调 ...
- [Flask]学习Flask第三天笔记总结
from flask import Flask,render_template,request from others import checkLogin app = Flask(__name__) ...
- [置顶] SQL注入问题
我们做系统,有没有想过,自己的容量很大的一个数据库就被很轻易的进入,并删除,是不是很恐怖的一件事.这就是sql注入. 一.SQL注入的概念 SQL注入攻击指的是通过构建特殊的输入作为参 ...
- android中定位光标位置
edittext.setSelection(int); edittext.setText(123);//设置edittext中的内容 edittext.setSelection(123.length( ...
- Struts的核心配置
一.配置struts.xml文件 1.struts.xml文件 2.常量配置 <constant> struts.properities web.xml中的<init-param&g ...
- (七)《Java编程思想》——多态的缺陷
1.不能“覆盖”私有方法 package chapter8; /** * 不能"覆盖"私有方法 */ public class PrivateOverride { private ...