POJ  2112 Optimal Milking (二分+最短路径+网络流)

Optimal Milking
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 10176   Accepted: 3698
Case Time Limit: 1000MS

Description

FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C.

Each milking point can "process" at most M (1 <= M <= 15) cows each day.

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line 1: A single line with three space-separated integers: K, C, and M.

* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input

2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0

Sample Output

2

Source



题目大意:这题的主要意思就是,K台机器,C头牛,每台机器可供M个牛,然后K+C行以及列
告诉它们间的路径,问所有牛中,走得最远的那头牛,走了多远?

解题思路:二分最远距离,floyd最短路径算出牛到每台机器的距离,根据二分的距离来构造图的连通性,构造网络图后用网络流计算最大流量是否为牛的总数,一步步二分得到结果。


#include <iostream>
#include <cstdio>
#include <queue>
#include <cstdlib>
using namespace std; const int maxn=300;
const int inf=1<<28;
struct edge{
int u,v,next,f;
edge(int u0=0,int v0=0,int f0=0,int next0=0){
u=u0,v=v0,f=f0,next=next0;
}
}e[maxn*maxn];
int head[maxn*2],visited[maxn*2],path[maxn*2],a[maxn][maxn];
int cnt,from,to,marked,K,C,M; void ini(){
from=0;to=K+C+1;
} void initial(){
cnt=0;marked=1;
for(int i=0;i<=to;i++){
head[i]=-1;
visited[i]=0;
}
} void adde(int u,int v,int f){
e[cnt].u=u,e[cnt].v=v,e[cnt].f=f,e[cnt].next=head[u],head[u]=cnt++;
e[cnt].u=v,e[cnt].v=u,e[cnt].f=0,e[cnt].next=head[v],head[v]=cnt++;
} void input(){
int c0,n=K+C;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&c0);
if(c0>0) a[i][j]=c0;
else a[i][j]=inf;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(a[i][k]+a[k][j]<a[i][j]) a[i][j]=a[i][k]+a[k][j];
}
} void build(int x){
initial();
for(int i=1;i<=K;i++) adde(from,i,M); //机器 1 - K 编号
for(int i=K+1;i<=K+C;i++) adde(i,to,1); //牛 K+1 - K+C 编号
for(int i=1;i<=K;i++){
for(int j=K+1;j<=K+C;j++){
if(a[i][j]<=x) adde(i,j,1);
}
}
} bool bfs(){
int s=from,d;
queue <int> q;
q.push(s);
marked++;
visited[s]=marked;
while(!q.empty()){
s=q.front();
q.pop();
for(int i=head[s];i!=-1;i=e[i].next){
d=e[i].v;
if(visited[d]!=marked && e[i].f>0){
visited[d]=marked;
path[d]=i;
q.push(d);
if(d==to) return true;
}
}
}
return false;
} int maxf(int x){
build(x);
int maxflow=0;
while(bfs() ){
int offflow=inf;
for(int i=to;i!=from;i=e[path[i]].u){
offflow=min(e[path[i]].f,offflow);
}
for(int i=to;i!=from;i=e[path[i]].u){
e[path[i]].f-=offflow;
e[path[i]^1].f+=offflow;
}
maxflow+=offflow;
}
return maxflow;
} void computing(){
int l=1,r=200000;
while(l<r){
int mid=(l+r)/2;
if(maxf(mid)>=C) r=mid;
else l=mid+1;
}
cout<<r<<endl;
} int main(){
while(cin>>K>>C>>M){
ini();
input();
computing();
}
return 0;
}


POJ 2112 Optimal Milking (二分+最短路径+网络流)的更多相关文章

  1. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  2. POJ 2112 Optimal Milking (二分+最短路+最大流)

    <题目链接> 题目大意: 有K台挤奶机和C头奶牛,都被视为物体,这K+C个物体之间存在路径.给出一个 (K+C)x(K+C) 的矩阵A,A[i][j]表示物体i和物体j之间的距离,有些物体 ...

  3. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  4. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  5. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  6. POJ 2112 Optimal Milking (Dinic + Floyd + 二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19456   Accepted: 6947 ...

  7. POJ 2112: Optimal Milking【二分,网络流】

    题目大意:K台挤奶机,C个奶牛,每台挤奶器可以供M头牛使用,给出奶牛和和机器间的距离矩阵,求所有奶牛走最大距离的最小值 思路:最大距离的最小值,明显提示二分,将最小距离二分之后问题转化成为:K台挤奶机 ...

  8. POJ 2112 Optimal Milking【网络流+二分+最短路】

    求使所有牛都可以被挤牛奶的条件下牛走的最长距离. Floyd求出两两节点之间的最短路,然后二分距离. 构图: 将每一个milking machine与源点连接,边权为最大值m,每个cow与汇点连接,边 ...

  9. POJ 2112 Optimal Milking 最短路 二分构图 网络流

    题意:有C头奶牛,K个挤奶站,每个挤奶器最多服务M头奶牛,奶牛和奶牛.奶牛和挤奶站.挤奶站和挤奶站之间都存在一定的距离.现在问满足所有的奶牛都能够被挤奶器服务到的情况下,行走距离的最远的奶牛的至少要走 ...

随机推荐

  1. 一个简单链表的C++实现

    /* LList.cpp * Author: Qiang Xiao * Time: 2015-07-12 */ #include<iostream> using namespace std ...

  2. java执行windows 的cmd 命令

    //获取运行时 Runtime rt = Runtime.getRuntime(); //获取进程 Process p = rt.exec(String[] cmdarray);     或者   P ...

  3. Zend Studio 如何配置本地apache服务器使用xdebug调试php脚本

    本地环境搭配: apache 2.2 安装位置:D:/program files/Apache Software Foundation/Apache2.2 php 5.2.10 安装位置:C:/php ...

  4. CentOS6.5安装MySQL5.7详细教程

    注:文中所写的安装过程均在CentOS6.5 x86下通过测试 主要参考博文: https://segmentfault.com/a/1190000003049498 http://www.th7.c ...

  5. 织梦dedecms|文章模型内容页标签

    文章标题:{dede:field.title/}文章链接:{dede:field name='arcurl'/}发布时间:{dede:field.pubdate function="MyDa ...

  6. 深入浅出—JAVA(1)

    1.基本概念 JAVA的工作方式 编写源代码文件--用编译器运行源代码(javac)--编译器会产出字节码--通过JAVA虚拟机读取与执行字节码(jvm). JAVA的程序结构 什么是源文件? 源文件 ...

  7. Code 16K 码

    Code 16K 码是一种多层.连续型.可变长度的条码符号,可以表示全ASCII字符集的128个字符及扩展ASCII字符.它采用UPC及Code128字符.一个16层的Code 16K符号,可以表示7 ...

  8. Qt见解:Post 与 Get 的区别(Get将参数直接与网址整合为一个整体,而Post则将其拆为两个部分)

    第一次接触Qt的Http项目,今天看了一下Post和Get的基本使用方法,就开始尝试了.原先以为Post专门用于向服务器发送请求,然后接收服务器应答的: 而Get只是单纯从服务器获取资源,比如下载这个 ...

  9. 单点登录 .NET MVC

    原文:单点登录 .NET MVC CAS 实现单点登录 .NET MVC   单点登录 Single Sign On,简称为 SSO,是目前比较流行的企业业务整合的解决方案之一.SSO的定义是在多个应 ...

  10. ThinkPHP 3.1.2 模板中的基本语法<2>

    本节课大纲: 一.导入CSS和JS文件 1.css link js scr <link rel='stylesheet' type='text/css' href='__PUBLIC__/Css ...