一、前言

表征分类精度的指标有很多,其中最常用的就是利用混淆矩阵、总体分类精度以及Kappa系数。

其中混淆矩阵能够很清楚的看到每个地物正确分类的个数以及被错分的类别和个数。但是,混淆矩阵并不能一眼就看出类别分类精度的好坏,为此从混淆矩阵衍生出来各种分类精度指标,其中总体分类精度(OA)和卡帕系数(Kappa)应用最为广泛。

总体分类精度(OA):指被正确分类的类别像元数与总的类别个数的比值;OA值虽然能很好的表征分类精度,但是对类别像元个数极度不平衡的多类地物来说,其值收到像元数据较多类别的影响较大,不能很好的表征每个类别地物。

Kappa系数(Kappa):Kappa系数是一种比例,代表着分类与完全随机的分类产生错误减少的比例,其计算过程可用如下公式表示:

二、计算和代码

以下部分代码主要实现,如何获得混淆矩阵,对于OA和Kappa系数则是很容易从混淆矩阵计算可得

     int tolCount = ;
for(int i = ;i<row;i++)
{
float *oriPtr = oriClassMap.ptr<float>();
float *stdPtr = stdClassMap.ptr<float>();
for(int j = ;j<col;j++)
{
int curStdIndex = int(stdPtr[j]);
if(curStdIndex == )
continue;
int curOriIndex = int(oriPtr[j]); if(curStdIndex == curOriIndex)
conf.at<int>(curStdIndex-,curStdIndex-) = conf.at<int>(curStdIndex-,curStdIndex-)+;
else
{
conf.at<int>(curStdIndex-,curOriIndex-) = conf.at<int>(curStdIndex-,curOriIndex-)+;
}
tolCount++;
}
}

三、计算结果显示

10. 混淆矩阵、总体分类精度、Kappa系数的更多相关文章

  1. kappa系数在评测中的应用

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7091315.html 前言 最近打算把翻译质量的人工评测好 ...

  2. kappa系数在大数据评测中的应用

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7091315.html 前言 最近打算把翻译质量的人工评测好 ...

  3. 利用sklearn对MNIST手写数据集开始一个简单的二分类判别器项目(在这个过程中学习关于模型性能的评价指标,如accuracy,precision,recall,混淆矩阵)

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  4. 【分类模型评判指标 一】混淆矩阵(Confusion Matrix)

    转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用 简介 混淆矩阵是ROC曲线绘制的基础 ...

  5. 分类问题(三)混淆矩阵,Precision与Recall

    混淆矩阵 衡量一个分类器性能的更好的办法是混淆矩阵.它基于的思想是:计算类别A被分类为类别B的次数.例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列. 为了计算一个混淆矩阵, ...

  6. ECCV 2018 | Bi-Real net:超XNOR-net 10%的ImageNet分类精度

    这项工作由香港科技大学,腾讯 AI lab,以及华中科技大学合作完成,目的是提升二值化卷积神经网络(1-bit CNN)的精度.虽然 1-bit CNN 压缩程度高,但是其当前在大数据集上的分类精度与 ...

  7. 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC

    评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...

  8. 二分类问题中混淆矩阵、PR以及AP评估指标

    仿照上篇博文对于混淆矩阵.ROC和AUC指标的探讨,本文简要讨论机器学习二分类问题中的混淆矩阵.PR以及AP评估指标:实际上,(ROC,AUC)与(PR,AP)指标对具有某种相似性. 按照循序渐进的原 ...

  9. [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法

    分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...

随机推荐

  1. Linux基础知识(二)

    1. 请回答,32位和64位有什么区别呢?什么时候安装32位的,又什么时候安装64位操作系统呢?如何查看系统是32位的还是64位的? 所谓的32位.64位指的是CPU的GPRs(General-Pur ...

  2. JavaScript 函数方法 - toString()

    Function.prototype.toString() 返回函数代码的字符串形式. 描述 Function 对象覆盖了从 Object 继承来的 Object.prototype.toString ...

  3. Linux 下安装oracle数据库

    原文出处       http://www.linuxidc.com/Linux/2015-02/113222.html 需要安装Oracle DataGuard,所以先要安装单台Oracle11g, ...

  4. 使用NSURLCache为NSURLRequest设置缓存

    http://m.blog.csdn.net/blog/u011439689/18734363#

  5. UIScrollView的属性

    属性 作用 CGPoint contentOffSet 监控目前滚动的位置 CGSize contentSize 滚动范围的大小 UIEdgeInsets contentInset 视图在scroll ...

  6. (二)CodeMirror - 配置项

    theme: string theme:'monokai' 引入对应的css, <link rel="stylesheet" href="../theme/mono ...

  7. 512M内存机器如何用好Mysql

    购买阿里云512M内存ECS后,mysql有时候会自动关闭,停止运行 解决办法: a,优化mysql配置,因为自己安装的是mysql 5.6,而从5.6开始,mysql安装包中不再包含my-small ...

  8. Jasper_table_resolve get multiple copies of table in detail band issue

    resolve method: (1) put table component into the Title band / Page Header band / Summary band, not i ...

  9. 向着DJANGO奔跑!

    这个项目明天上半年要弄好,就牛X了哈哈. 平台化运维.PYTHON,SVN,SALTSTACK,.....一锅端~~:) from django.contrib import admin # Regi ...

  10. keil c51的内部RAM(idata)动态内存管理程序

    程序比较简单,但感觉比较有意思,个人认为有一定应用价值,希望大家有更好的思路和方法,互相促进. 程序的基本思路是:在CPU堆栈指针SP以上的RAM区域,通过把堆栈指针SP上移若干个字节,把空出的RAM ...