Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15942    Accepted Submission(s): 11245

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The
input contains several test cases. Each test case contains a positive
integer N(1<=N<=120) which is mentioned above. The input is
terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
 
Recommend
We have carefully selected several similar problems for you:  1085 1398 2152 1709 1059
 
一开始自己想了一种解法,类似dp,但是应该不是dp,应该算找规律,速度没dp快,因为多了一层循环,虽然最里面一层循环很小,
#include<queue>
#include<math.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 130
int n,d[N][N];//d[i][j]表示组成不超过j的数组成i有多少种方法 int main()
{
for(int i=;i<=;i++)d[i][]=;
d[][]=;
for(int i=;i<=;i++)
{
for(int j=;j<=i;j++)
{
for(int k=j;k>=;k--)
{
d[i][j]+=d[i-k][min(i-k,k)];
}
}
}
while(~scanf("%d",&n))
{
cout<<d[n][n]<<endl;
}
return ;
}

看了网上的正规dp解法,稍加改进

#include<queue>
#include<math.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 130
int n,d[N][N]; int main()
{
for(int i=;i<=;i++)d[i][]=;
d[][]=;
for(int i=;i<=;i++)
{
for(int j=;j<=i;j++)
{
d[i][j]=d[i][j-]+d[i-j][min(j,i-j)];
}
}
while(~scanf("%d",&n))
{
cout<<d[n][n]<<endl;
}
return ;
}

还有一种母函数的做法

以后再学习

HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)的更多相关文章

  1. hdu 1028 Ignatius and the Princess III 母函数

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  3. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  4. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  7. 题解报告:hdu 1028 Ignatius and the Princess III(母函数or计数DP)

    Problem Description "Well, it seems the first problem is too easy. I will let you know how fool ...

  8. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  9. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

随机推荐

  1. getParameter getAttribute

    URL:http://localhost:8888/Test/index.jsp?test=123 <body> ${test} ${requestScope.test} <%req ...

  2. jmeter压力测试入门

    http://www.51testing.com/html/80/n-853680.html http://blog.csdn.net/vincy_zhao/article/details/70238 ...

  3. Knockout v3.4.0 中文版教程-11-控制文本内容和外观-text绑定

    2. text绑定 目的 text绑定把传入的参数通过关联的DOM元素来显示文本值. 通常这对像<span>或<em>标签等使用,但技术上你可以对任何元素使用该绑定. 例子 T ...

  4. OmniGraffler软件和激活码

    mac上用户画图的软件:OmniGraffler破解方法 1.激活码 Name: Appked SN: MFWG-GHEB-HYTW-CGHT-CSXU-QCNC-SXU 2.软件连接 链接: htt ...

  5. move_uploaded_file failed to open stream permission denied

    Make sure that: IWPG_user, where user is a system user of the subscription who has rights to "R ...

  6. mysql语句优化方案(网上流传)

    关于mysql处理百万级以上的数据时如何提高其查询速度的方法 最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法. 由于在参与的实际项目中发现当mysql表的数 ...

  7. 在GridView中的每一页末尾添加空行

    原文发布时间为:2008-08-03 -- 来源于本人的百度文章 [由搬家工具导入] protected void GridView1_RowCreated(object sender, GridVi ...

  8. 更全的bootstrap教程连接

    更全的bootstrap教程: http://www.jb51.net/article/84087.htm

  9. CatchTheCaw ----广搜入门

    抓住那头牛(POJ3278)农夫知道一头牛的位置,想要抓住它.农夫和牛都位于数轴上,农夫起始位于点N(0<=N<=100000),牛位于点K(0<=K<=100000).农夫有 ...

  10. Scrapy学习-7-数据存储至数据库

    使用MySQL数据库存储 安装mysql模块包 pip install mysqlclient 相关库文件 sudo apt-get install libmysqlclient-devel sudo ...