Scout YYF I
YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1- p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF
Each test case contains two lines. 
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step. 
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000 一位童子兵要穿过一条路,路上有些地方放着地雷。这位童子兵非常好玩,走路一蹦一跳的。
每次他在 i 位置有 p 的概率走一步到 i+1 ,或者 (1-p) 的概率跳一步到 i+2。童子兵初始在1位置,求他安全通过这条道路的概率。
以所在位置为状态,dp[i] 表示在位置 i 的安全的概率。
dp[i] = p * dp[i-1] + (1 - p) * dp[i-2]; // i 位置没有地雷
但是题目数据的范围是 10^8 这样dp的话会 TLE。
想想可以用矩阵快速幂优化。简单推出矩阵是
|p 1-p| * |dp[i]   | = |dp[i+1]|
|1 0    |   |dp[i-1]|    |dp[i]     |
而这时地雷位置是不满足这个矩阵的,因此我们得对地雷位置进行特判。而两个地雷中间的位置可以用快速幂优化。
假设 k 位置放有地雷,,我们可以得到 dp[k+1] = dp[k-1] * (1 - p);
对于炸弹位置为 a[i] 和 a[i+1] 之间的数,知道 dp[a[i]+1] 后可以推出
(视0位置有颗地雷,有地雷的位置的dp值为0)
于是我们可以对两个前后两个地雷之间用快速幂优化,并最终得到答案dp[max(a[i])+1];
转自:http://blog.csdn.net/xuelanghu407/article/details/47172759
 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std; int n;double p;
int x[]; struct Node{double mat[][];};
Node mul(Node a,Node b)
{
Node res;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
res.mat[i][j]=;
for(int k=;k<;k++) res.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return res;
}
Node pow_M(Node a,int n)
{
Node res;
memset(res.mat,,sizeof(res.mat));
for(int i=;i<;i++)
res.mat[i][i]=;
Node temp=a;
while(n)
{
if(n&)res=mul(res,temp);
temp=mul(temp,temp);
n>>=;
}
return res;
}
int main()
{
while(~scanf("%d%lf",&n,&p))
{
for(int i=;i<n;i++)
scanf("%d",&x[i]);
sort(x,x+n);
double ans=;
Node tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Node temp; temp=pow_M(tt,x[]-);
ans*=(-temp.mat[][]); for(int i=;i<n;i++)
{
if(x[i]==x[i-])continue;
temp=pow_M(tt,x[i]-x[i-]-);
ans*=(-temp.mat[][]);
}
printf("%.7f\n",ans);
}
}
 

POJ3744 Scout YYF I (矩阵优化的概率DP)的更多相关文章

  1. Scout YYF I POJ - 3744(概率dp)

    Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  2. poj3744 Scout YYF I[概率dp+矩阵优化]

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8598   Accepted: 2521 Descr ...

  3. [Poj3744]Scout YYF I (概率dp + 矩阵乘法)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9552   Accepted: 2793 Descr ...

  4. POJ3744 Scout YYF I 概率DP+矩阵快速幂

    http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...

  5. POJ-3744 Scout YYF I 概率DP

    题目链接:http://poj.org/problem?id=3744 简单的概率DP,分段处理,遇到mine特殊处理.f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine ...

  6. POJ-3744 Scout YYF I (矩阵优化概率DP)

    题目大意:有n颗地雷分布在一条直线上,有个人的起始位置在1,他每次前进1步的概率为p,前进两步的概率为1-p,问他不碰到地雷的概率. 题目分析:定义状态dp(i)表示到了dp(i)的概率,则状态转移方 ...

  7. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  8. poj 3744 Scout YYF I (矩阵快速幂 优化 概率dp)

    题目链接 分析&&题意来自 : http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710586.html 题意: 在一条不满地雷的 ...

  9. [poj3744] Scout YYF I【概率dp 数学期望】

    传送门:http://poj.org/problem?id=3744 令f(i)表示到i,安全的概率.则f(i) = f(i - 1) * p + f(i - 2) * (1 - p),若i位置有地雷 ...

随机推荐

  1. 深度技术GHOST WIN7系统32,64位旗舰稳定版

    系统来自系统妈:http://www.xitongma.com 系统概述 深度技术ghost win8 X86(32位)旗舰稳定版系统集成了SATA/RAID/SCSI驱动,支持P45. MCP78. ...

  2. 系统妈Win10系统64位和32位快速专业版

    win10系统64位快速专业安装版 V2016年 系统妈:http://www.xitongma.com/ Ghost Win10 64位正式装机专业版2016 微软向Windows用户推送了win1 ...

  3. 51nod 1526 分配笔名

    题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题. 班里有n个同学.老师为他们选了n个笔名.现在要把这些笔名分配给每一个同学,每一 ...

  4. Codeforces Round #318 (Div. 2) D Bear and Blocks (数学)

    不难发现在一次操作以后,hi=min(hi-1,hi-1,hi+1),迭代这个式子得到k次操作以后hi=min(hi-j-(k-j),hi-k,hi+j-(k-j)),j = 1,2,3... 当k ...

  5. java B转换KB MB GB TB PB EB ZB

    public static String readableFileSize(long size) { if (size <= 0) { return "0"; } final ...

  6. PAT (Basic Level) Practise (中文)-1030. 完美数列(25)

    PAT (Basic Level) Practise (中文)-1030. 完美数列(25)   http://www.patest.cn/contests/pat-b-practise/1030 给 ...

  7. JdbcTemplate类对sql的操作使用

    <!--方式一: dbcp 数据源配置,在测试环境使用单连接 --> <bean id="dataSource" class="org.apache.c ...

  8. emoji等表情符号存mysql的方法

    项目中需要存储用户信息(用户昵称有表情符号),自然就遇到了emoji等表情符号如何被mysql DB支持的问题 这里引用先行者博文:https://segmentfault.com/a/1190000 ...

  9. centOS下SVN安装和配置

    1>SVN服务器端文件可见问题 在平时使用SVN时候,一直以为在客户提交文件,那么在服务器对应的版本库下面就会有相同文件.在自己搭建后,发现提交到服务器端文件完全看不见.... 这是由于SVN服 ...

  10. JS获取单选框checked的value方法

    ; var obj = document.getElementsByTagName("input"); document.getElementById('gender').oncl ...