POJ3744 Scout YYF I (矩阵优化的概率DP)
Input
Each test case contains two lines.
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].
Output
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000 一位童子兵要穿过一条路,路上有些地方放着地雷。这位童子兵非常好玩,走路一蹦一跳的。
每次他在 i 位置有 p 的概率走一步到 i+1 ,或者 (1-p) 的概率跳一步到 i+2。童子兵初始在1位置,求他安全通过这条道路的概率。
以所在位置为状态,dp[i] 表示在位置 i 的安全的概率。
dp[i] = p * dp[i-1] + (1 - p) * dp[i-2]; // i 位置没有地雷
但是题目数据的范围是 10^8 这样dp的话会 TLE。
想想可以用矩阵快速幂优化。简单推出矩阵是
|p 1-p| * |dp[i] | = |dp[i+1]|
|1 0 | |dp[i-1]| |dp[i] |
而这时地雷位置是不满足这个矩阵的,因此我们得对地雷位置进行特判。而两个地雷中间的位置可以用快速幂优化。
假设 k 位置放有地雷,,我们可以得到 dp[k+1] = dp[k-1] * (1 - p);
对于炸弹位置为 a[i] 和 a[i+1] 之间的数,知道 dp[a[i]+1] 后可以推出
(视0位置有颗地雷,有地雷的位置的dp值为0)
于是我们可以对两个前后两个地雷之间用快速幂优化,并最终得到答案dp[max(a[i])+1];
转自:http://blog.csdn.net/xuelanghu407/article/details/47172759
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std; int n;double p;
int x[]; struct Node{double mat[][];};
Node mul(Node a,Node b)
{
Node res;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
res.mat[i][j]=;
for(int k=;k<;k++) res.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return res;
}
Node pow_M(Node a,int n)
{
Node res;
memset(res.mat,,sizeof(res.mat));
for(int i=;i<;i++)
res.mat[i][i]=;
Node temp=a;
while(n)
{
if(n&)res=mul(res,temp);
temp=mul(temp,temp);
n>>=;
}
return res;
}
int main()
{
while(~scanf("%d%lf",&n,&p))
{
for(int i=;i<n;i++)
scanf("%d",&x[i]);
sort(x,x+n);
double ans=;
Node tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Node temp; temp=pow_M(tt,x[]-);
ans*=(-temp.mat[][]); for(int i=;i<n;i++)
{
if(x[i]==x[i-])continue;
temp=pow_M(tt,x[i]-x[i-]-);
ans*=(-temp.mat[][]);
}
printf("%.7f\n",ans);
}
}
POJ3744 Scout YYF I (矩阵优化的概率DP)的更多相关文章
- Scout YYF I POJ - 3744(概率dp)
Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- poj3744 Scout YYF I[概率dp+矩阵优化]
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8598 Accepted: 2521 Descr ...
- [Poj3744]Scout YYF I (概率dp + 矩阵乘法)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9552 Accepted: 2793 Descr ...
- POJ3744 Scout YYF I 概率DP+矩阵快速幂
http://poj.org/problem?id=3744 题意:一条路,起点为1,有概率p走一步,概率1-p跳过一格(不走中间格的走两步),有n个点不能走,问到达终点(即最后一个坏点后)不踩坏点的 ...
- POJ-3744 Scout YYF I 概率DP
题目链接:http://poj.org/problem?id=3744 简单的概率DP,分段处理,遇到mine特殊处理.f[i]=f[i-1]*p+f[i-2]*(1-p),i!=w+1,w为mine ...
- POJ-3744 Scout YYF I (矩阵优化概率DP)
题目大意:有n颗地雷分布在一条直线上,有个人的起始位置在1,他每次前进1步的概率为p,前进两步的概率为1-p,问他不碰到地雷的概率. 题目分析:定义状态dp(i)表示到了dp(i)的概率,则状态转移方 ...
- 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...
- poj 3744 Scout YYF I (矩阵快速幂 优化 概率dp)
题目链接 分析&&题意来自 : http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710586.html 题意: 在一条不满地雷的 ...
- [poj3744] Scout YYF I【概率dp 数学期望】
传送门:http://poj.org/problem?id=3744 令f(i)表示到i,安全的概率.则f(i) = f(i - 1) * p + f(i - 2) * (1 - p),若i位置有地雷 ...
随机推荐
- C语言中的二级指针(双指针)
原创作品,转载请标明出处http://blog.csdn.net/yming0221/article/details/7220688 C语言更多查看 C语言使用注意事项(一) C语言使用注意事项(二) ...
- Android(java)学习笔记148:网易新闻RSS客户端应用编写逻辑过程
1.我们的项目需求是编写一个新闻RSS浏览器,RSS(Really Simple Syndication)是一种描述和同步网站内容的格式,是使用最广泛的XML应用.RSS目前广泛用于网上新闻频道,bl ...
- 1.JOIN和UNION区别
1.JOIN和UNION区别join 是两张表做交连后里面条件相同的部分记录产生一个记录集,union是产生的两个记录集(字段要一样的)并在一起,成为一个新的记录集 . JOIN用于按照ON条件联接两 ...
- Python学习记录1
交互式解释器 模块 python序列 索引提取 序列运算 空列表 成员资格 长度最大值最小值函数 列表 list和join函数 交互式解释器 ' >>> '为提示符. 语句是用来告诉 ...
- [LUOGU] 1364 医院设置
设有一棵二叉树,如图: [我是图] 其中,圈中的数字表示结点中居民的人口.圈边上数字表示结点编号,现在要求在某个结点上建立一个医院,使所有居民所走的路程之和为最小,同时约定,相邻接点之间的距离为1.如 ...
- PHP 把字符转换为 HTML 实体 - htmlentities() 函数
定义和用法 htmlentities() 函数把字符转换为 HTML 实体. 语法 htmlentities(string,quotestyle,character-set) 参数 描述 string ...
- Centos6.9 搭建rsync服务端与客户端 案例:全网备份项目
rsync的企业工作场景说明 1)定时备份 1.1生产场景集群架构服务器备份方案项目 借助cron+rsync把所有客户服务器数据同步到备份服务器 2)实时复制 本地数据传输模式(local-only ...
- RN原生方法setNativeProps
https://facebook.github.io/react-native/docs/direct-manipulation.html setNativeProps可以直接修改底层native组件 ...
- 2018年,最经典的26个JavaScript面试题和答案!
根据 Stack Overflow 的 2018 年度调查,JavaScript 连续六年成为最常用的编程语言.所以我们必须面对这样的现实,JavaScript 已经成为全栈开发技能的基石,在全栈开发 ...
- $(addprefix PREFIX,NAMES…)
addprefix 是makefile中的函数,是添加前缀的函数例如:$(addprefix src/,foo bar) 返回值为“src/foo src/bar”.所以上面的意思是为dirver_d ...
