整数划分(二)

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述

把一个正整数m分成n个正整数的和,有多少种分法?

例:把5分成3个正正数的和,有两种分法:

1 1 3

1 2 2

 
输入
第一行是一个整数T表示共有T组测试数据(T<=50)
每组测试数据都是两个正整数m,n,其中(1<=n<=m<=100),分别表示要拆分的正数和拆分的正整数的个数。
输出
输出拆分的方法的数目。
样例输入
2
5 2
5 3
样例输出
2
2
来源
[张云聪]原创
上传者
张云聪
 
在整数划分(一)的基础上改编的,整数划分(一)里有详解:http://www.cnblogs.com/xl1027515989/p/3603533.html
针对此题,方法和整数划分(一)类似:

首先 定义f ( i , j )为整数  i  分成 j  个整数 的情况
经过分析可得f(i, j )可转化为两个部分:
一:  假设 分成的  j  个整数中 不包含1。。那么 此时 f (i-j,j)就是这部分的总情况,既然想让他不包含1,就先将j个整数都分为1,此时i变为i-j,再将i分为j个整数,这j个整数再加上原先分的1,就肯定不会再有1出现了。如果i-j<j的话,f (i-j,j)的值为0
二: 假设分成的j个整数至少有一个1。。那么此时f(i-1,j-1)

代码如下(一)

 #include <stdio.h>
int f(int m,int n)
{
if(m==n||n==)
return ;
else if(m<n)
return ;
else if(m>n)
return f(m-,n-)+f(m-n,n);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int m,n;
scanf("%d%d",&m,&n);
printf("%d\n",f(m,n));
}
return ;
}
//AC
//首先 定义f ( i , j )为整数 i 分成 j 个整数 的情况
//经过分析可得f(i, j )可转化为两个部分:
//一: 假设 分成的 j 个整数中 不包含1。。那么 此时 f (i-j,j)就是这部分的总情况,既然想让他不包含1,就先将j个整数都分为1,此时i变为i-j,再将i分为j个整数,这j个整数再加上原先分的1,就肯定不会再有1出现了。如果i-j<j的话,f (i-j,j)的值为0
//二: 假设分成的j个整数至少有一个1。。那么此时f(i-1,j-1)
//

代码如下(二):

 #include <stdio.h>
int s[][];
int f(int m,int n)
{
if(s[m][n]!=)
return s[m][n];//用数组保存已处理过的数据节约时间
if(m==n||n==)
return ;
else if(m<n)
return ;
else if(m>n)
return s[m][n]=f(m-,n-)+f(m-n,n);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int m,n;
scanf("%d%d",&m,&n);
printf("%d\n",f(m,n));
}
return ;
}
//AC

nyoj_176_整数划分(二)_201404261715的更多相关文章

  1. 递归---NYOJ-176 整数划分(二)和NYOJ-279队花的烦恼二

    这道题目的递归思想和第一个题差不多, 主要思想是:func(n, m)的作用是将n划分为m个. 1. 如果n < m 的时候肯定是不能划分的,所以就返回0 2. 如果m = 1 或者 n = m ...

  2. NYOJ-571 整数划分(三)

    此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...

  3. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

  4. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  5. POJ1664(整数划分)

    放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30894   Accepted: 19504 Description ...

  6. 大概是:整数划分||DP||母函数||递推

    整数划分问题 整数划分是一个经典的问题. Input 每组输入是两个整数n和k.(1 <= n <= 50, 1 <= k <= n) Output 对于每组输入,请输出六行. ...

  7. hdu-2709整数划分 技巧

    整数划分变形,由2^k组成. 整数划分中一个节约内存的技巧,平时我们使用dp[i][j]维护用不大于j的数组合成i的方案数,所以必须dp[i-j][j]->dp[i][j].这样就需要二位,如果 ...

  8. poj1664 放苹果(DPorDFS)&&系列突破(整数划分)

    poj1664放苹果 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33661   Accepted: 20824 Desc ...

  9. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

随机推荐

  1. [书目20140902]实战Windows Azure——微软云计算平台技术详解 --徐子岩

    目录第1章  云计算技术简介    1.1  云计算所要解决的问题    1.2  云计算平台的分类    1.3  微软云计算平台Windows Azure        1.3.1  高可用性   ...

  2. poj2991 Crane

    思路: 线段树每个节点维护第一条线段起点指向最后一条线段终点的向量,于是每一个操作都是一次区间更新.使用成段更新的线段树即可.实现: #include <cstdio> #include ...

  3. 使用一个CSS Class去给标签定义Style

    使用一个CSS Class去给标签定义Style 类是可重用的样式,可以添加到HTML元素. 下面是一个CSS类声明的例子: <style>   .blue-text {     colo ...

  4. 机器学习-Logistic function(Sigmoid function)

    下面给出H函数  由这个函数生成的曲线称为Sigmoid曲线 先不从数学上说为什么这个模型中二元分类上比线性模型好,单纯从图形上看就可以得到直观的结论  首先Y值域在[0,1],其次图形中中间陡峭而两 ...

  5. Uml 建模 一(类图建模和startuml的使用)

    本文将分三个部分介绍Uml建模:Uml建模的作用.类图.startuml的使用 Uml的作用 本文以java为例介绍Uml,在当前的软件开发中大多数使用面向对象开发(OO),面向对象的就是将现实世界中 ...

  6. spark源码编译,运行example遇到:NoClassDefFoundError: org/spark_project/guava/cache/CacheLoader

    基本环境: win10+idea Scala2.11.8 maven3.5.3 spark2.1.0 问题: 在window10下编译spark2.1.0源码,在idea下运行example,遇到问题 ...

  7. vb,wps,excel 提取括号的数字

    Sub 抽离数字() Dim hang Range("h1").Select Columns("E:F").Select Selection.Clear Ran ...

  8. glm 矩阵乘法得反过来写

  9. PHP常量和数据类型考察点

    PHP 常量 常量是单个值的标识符(名称).在脚本中无法改变该值. 有效的常量名以字符或下划线开头(常量名称前面没有 $ 符号). 注释:与变量不同,常量贯穿整个脚本是自动全局的. PHP常量的两种定 ...

  10. (转)淘淘商城系列——使用maven构建工程

    http://blog.csdn.net/yerenyuan_pku/article/details/72669269 开发工具和环境 这里,我统一规范一下淘淘商城的开发工具和环境,如下: Eclip ...