静态区间第k大(归并树)
POJ 2104为例
思想:
利用归并排序的思想:
- 建树过程和归并排序类似,每个数列都是子树序列的合并与排序。
- 查询过程,如果所查询区间完全包含在当前区间中,则直接返回当前区间内小于所求数的元素个数,否则递归的对子树进行求解并相加。
- 使用STL中的merge对子序列进行合并及排序。
- 时间复杂度O(nlogn+mlog3n)
代码(vector实现):
#include<cstdio>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;//[)
const int maxn = 1000010;
vector<int>dat[maxn*3];
int sorted[maxn], a[maxn];
void build(int k, int l, int r)
{
if(r - l == 1) dat[k].push_back(a[l]);
else {
int lch = 2 * k + 1, rch = 2 * k + 2;
build(lch, l, (l + r)/2);
build(rch, (l + r)/2, r);
dat[k].resize(r - l);
merge(dat[lch].begin(), dat[lch].end(), dat[rch].begin(), dat[rch].end(),dat[k].begin());
}
}
int query(int l, int r, int x, int k, int L, int R)
{
if(r <= L|| l >= R) return 0;//不相交
else if(l <= L && R <= r){//完全包含
return lower_bound(dat[k].begin(), dat[k].end(), x) - dat[k].begin();
}
else {
int lch = 2 * k + 1, rch = 2 * k + 2;
int lsum = query(l, r, x, lch, L, (L + R)/2);
int rsum = query(l, r, x, rch, (L + R)/2, R);
return lsum + rsum;
}
}
int main (void)
{
int n, m;scanf("%d%d",&n,&m);
for(int i = 0; i < n; i++){
scanf("%d",&a[i]);
sorted[i] = a[i];
}
sort(sorted, sorted+n);
build(0, 0, n);
int tl, tr, k;
while(m--){
scanf("%d%d%d",&tl,&tr,&k);
int l = 0, r = n;
while(r - l >1){
int mid = l + (r - l)/2;
int c = query(tl-1, tr, sorted[mid], 0, 0 ,n);
if(c <= k - 1 ) l = mid;
else r = mid;
}
printf("%d\n", sorted[l]);
}
return 0;
}//6000+ms
代码(数组实现):
#include<cstdio>
#include<algorithm>
#include<vector>
#include<iostream>
using namespace std;//[)
const int maxn = 1000010;
int dat[20][3*maxn];
int sorted[maxn], a[maxn];
void build(int p, int l, int r)
{
if(r - l == 1) dat[p][l] = a[l];
else {
build(p+1, l, (l + r)/2);
build(p+1, (l + r)/2, r);
merge(dat[p+1] + l, dat[p+1] + (l + r)/2, dat[p+1] + (l + r)/2, dat[p+1] + r, dat[p]+l);
}
}
int query(int l, int r, int x, int p, int L, int R)
{
if(r <= L|| l >= R) return 0;//不相交
else if(l <= L && R <= r){//完全包含
return lower_bound(dat[p]+L, dat[p]+R, x) - (dat[p]+L);
}
else {
int lsum = query(l, r, x, p+1, L, (L + R)/2);
int rsum = query(l, r, x, p+1, (L + R)/2, R);
return lsum + rsum;
}
}
int main (void)
{
int n, m;scanf("%d%d",&n,&m);
for(int i = 0; i < n; i++){
scanf("%d",&a[i]);
sorted[i] = a[i];
}
sort(sorted, sorted+n);
build(0, 0, n);
int tl, tr, k;
while(m--){
scanf("%d%d%d",&tl,&tr,&k);
int l = 0, r = n;
while(r - l >1){
int mid = l + (r - l)/2;
int c = query(tl-1, tr, sorted[mid], 0, 0 ,n);
if(c <= k - 1 ) l = mid;
else r = mid;
}
printf("%d\n", sorted[l]);
}
return 0;
}//2000+ms
- 数组实现的要比vector快很多。
- 归并树需要二分求解,但是划分树并不需要。因为划分树是从上到下,每次都用数组记录划分到左子树的元素个数,所以可以直接求得区间第k大数,而归并树是由下到上,每次对子树进行简单的合并和排序,并没有对划分到左子树的元素进行追踪,所以需要二分搜索答案,即线段树+二分。所以在求静态区间第k大时划分树也就比归并树要快。
静态区间第k大(归并树)的更多相关文章
- poj2104&&poj2761 (主席树&&划分树)主席树静态区间第k大模板
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 43315 Accepted: 14296 Ca ...
- 主席树(静态区间第k大)
前言 如果要求一些数中的第k大值,怎么做? 可以先就这些数离散化,用线段树记录每个数字出现了多少次. ... 那么考虑用类似的方法来求静态区间第k大. 原理 假设现在要有一些数 我们可以对于每个数都建 ...
- 可持久化线段树(主席树)——静态区间第k大
主席树基本操作:静态区间第k大 #include<bits/stdc++.h> using namespace std; typedef long long LL; ,MAXN=2e5+, ...
- HDU3473--Minimum Sum(静态区间第k大)
Minimum Sum Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- 主席树学习笔记(静态区间第k大)
题目背景 这是个非常经典的主席树入门题——静态区间第K小 数据已经过加强,请使用主席树.同时请注意常数优化 题目描述 如题,给定N个整数构成的序列,将对于指定的闭区间查询其区间内的第K小值. 输入输出 ...
- POJ2104-- K-th Number(主席树静态区间第k大)
[转载]一篇还算可以的文章,关于可持久化线段树http://finaltheory.info/?p=249 无修改的区间第K大 我们先考虑简化的问题:我们要询问整个区间内的第K大.这样我们对值域建线段 ...
- HDU 2665 Kth number(主席树静态区间第K大)题解
题意:问你区间第k大是谁 思路:主席树就是可持久化线段树,他是由多个历史版本的权值线段树(不是普通线段树)组成的. 具体可以看q学姐的B站视频 代码: #include<cmath> #i ...
- 主席树初步学习笔记(可持久化数组?静态区间第k大?)
我接触 OI也快1年了,然而只写了3篇博客...(而且还是从DP跳到了主席树),不知道我这个机房吊车尾什么时候才能摸到大佬们的脚后跟orz... 前言:主席树这个东西,可以说是一种非常畸形的数据结构( ...
- POJ 2104 && POJ 2761 (静态区间第k大,主席树)
查询区间第K大,而且没有修改. 使用划分树是可以做的. 作为主席树的入门题,感觉太神奇了,Orz /* *********************************************** ...
随机推荐
- html 相对定位 绝对 定位 css + div
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 0 Transitional//EN""http://www.worg/TR/xh ...
- 初学Ajax
AJAX即“Asynchronous Javascript And XML”(异步JavaScript和XML),是指一种创建交互式网页应用的网页开发技术. AJAX = 异步 JavaScript和 ...
- IIS 安装了.net framework 4.0/4.5 却找不到相应应用程序池
通常情况下是因为没注册造成的,有些安装包会自己帮你注册上有些不会,感觉略坑. 注册方法:在计算机中点击 开始菜单–>运行 拷贝以下内容运行一下即可. C:\WINDOWS\Microsoft.N ...
- VS2012创建WebForm项目提示错误: 此模板尝试加载组件程序集 “NuGet.VisualStudio.Interop, Version=1.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”。
解决方案: 使用VS2012开发,都要装NuGet插件(官网:http://nuget.org),进官网点安装就进入了微软的下载页面, 选择vs2012版本的NuGet.Tools.vsix文件,双击 ...
- Objective -C Memory Management 内存管理 第一部分
Objective -C Memory Management 内存管理 第一部分 Memory management is part of a more general problem in pr ...
- 【4412开发板使用经验分享】迅为4412开发板I2C驱动问题
本文转自迅为论坛:bbs.topeetboard.com 我想写DS3231 的驱动 但是读回的数据老是-6 硬件: 我I2C设备连接的这几个GPIO,看了2.5的手册,接口应该是链接正确的 软件 分 ...
- html嵌入pdf && html嵌入多媒体文件,word,flash,pdf,音视频
<object classid="clsid:CA8A9780-280D-11CF-A24D-444553540000" width="1000" hei ...
- C#readonly 关键字与 const 关键字的区别
1. const 字段只能在该字段的声明中初始化,readonly 字段可以在声明或构造函数中初始化.因此,根据所使用的构造函数,readonly 字段可能具有不同的值. 2. const 字段是编译 ...
- 雷林鹏分享:PHP 错误处理
在 PHP 中,默认的错误处理很简单.一条错误消息会被发送到浏览器,这条消息带有文件名.行号以及描述错误的消息. PHP 错误处理 在创建脚本和 Web 应用程序时,错误处理是一个重要的部分.如果您的 ...
- 第3节 hive高级用法:14、hive的数据压缩
六.hive的数据压缩 在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的 ...