Problem - 4635 http://acm.hdu.edu.cn/showproblem.php?pid=4635

题目大意:

n个点,m条边,求最多再加几条边,然后这个图不是强连通

分析:

这是一个单向图,如果强连通的话,他最多应该有n*(n-1)条边,假设有a个强连通块,任取其中一个强连通块,假设取出的这个强连通块里有x个点,剩下的(n-a)个点看成一个强连通块,如果让这两个强连通块之间不联通,肯定是这两个只有一个方向的边,最多就会有x*(n-x)条边  所以最多加n*(n-1)-x*x(n-x)-m边。所以当x最小是式子最大。

Problem Description
Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 
 
Input
The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
 
Output
For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.
 
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
 
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector> using namespace std;
#define N 100005
#define INF 0x3f3f3f3f struct node
{
int to,next;
}edge[N*]; int low[N],dfn[N],Time,top,ans,Stack[N],belong[N],sum,head[N],aa[N],in[N],out[N],Is[N]; void Inn()
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(Stack,,sizeof(Stack));
memset(belong,,sizeof(belong));
memset(head,-,sizeof(head));
memset(aa,,sizeof(aa));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(Is,,sizeof(Is));
Time=top=ans=sum=;
} void add(int from,int to)
{
edge[ans].to=to;
edge[ans].next=head[from];
head[from]=ans++;
} void Tarjin(int u,int f)
{
low[u]=dfn[u]=++Time;
Stack[top++]=u;
Is[u]=;
int v;
for(int i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].to;
if(!dfn[v])
{
Tarjin(v,u);
low[u]=min(low[u],low[v]);
}
else if(Is[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
sum++;
do
{
v=Stack[--top];
belong[v]=sum;
aa[sum]++;
Is[v]=;
}while(v!=u);
}
} void solve(int n,int m)
{
for(int i=;i<=n;i++)
{
if(!dfn[i])
Tarjin(i,);
}
if(sum==)
{
printf("-1\n");
return ;
}
long long Max=;
for(int i=;i<=n;i++)
{
for(int j=head[i];j!=-;j=edge[j].next)
{
int u=belong[i];
int v=belong[edge[j].to];
if(u!=v)
{
in[v]++;
out[u]++;
}
}
}
long long c=n*(n-)-m;
for(int i=;i<=sum;i++)
{
if(!in[i] || !out[i])
Max=max(Max,c-(aa[i]*(n-aa[i])));
}
printf("%lld\n",Max);
}
int main()
{
int T,n,m,a,b,i,t=;
scanf("%d",&T);
while(T--)
{
Inn();
scanf("%d %d",&n,&m);
for(i=;i<m;i++)
{
scanf("%d %d",&a,&b);
add(a,b);
}
printf("Case %d: ",t++);
solve(n,m);
}
return ;
}

Strongly connected-HDU4635的更多相关文章

  1. Strongly connected(hdu4635(强连通分量))

    /* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...

  2. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  3. algorithm@ Strongly Connected Component

    Strongly Connected Components A directed graph is strongly connected if there is a path between all ...

  4. cf475B Strongly Connected City

    B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  5. 【CF913F】Strongly Connected Tournament 概率神题

    [CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...

  6. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  7. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  8. HDU4625:Strongly connected(思维+强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  10. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. 特性property

    #property装饰器用于将被装饰的方法伪装成一个数据属性,在使用时可以不用加括号而直接引用# class People:# def __init__(self,name,weight,height ...

  2. vue cli 3 打包过大问题

    vue cli 3 打包命令 npm run build,这种情况下的打包可以通过设置 vue.config.js里面的 productionSourceMap: false. 如果是自己设置的打包环 ...

  3. SQL Case 语句的使用

    -----简单case 使用 select 学号,姓名, case 专业 when '金融系' then '1' when '材料成型及控制工程' then '2' else '3' end from ...

  4. Objective-C Memory Management 内存管理 2

    Objective-C Memory Management 内存管理  2  2.1 The Rules of Cocoa Memory Management 内存管理规则 (1)When you c ...

  5. 仿陌陌的ios客户端+服务端源码

    软件功能:模仿陌陌客户端,功能很相似,注册.登陆.上传照片.浏览照片.浏览查找附近会员.关注.取消关注.聊天.语音和文字聊天,还有拼车和搭车的功能,支持微博分享和查找好友. 后台是php+mysql, ...

  6. java将字段映射成另一个字段,关于 接口传参 字段不对应转换

    在接口开发中我们经常会遇到一个问题,打个比方,我们的实体类A中有两个字段user和pwd但是接口中需要username和password这怎么办呢,我想到了两种方法:1.新创建一个实体类B或者new一 ...

  7. CAD参数绘制实心圆弧填充(com接口)

    C#中实现代码说明: private void DrawPathToHatch1() { //把路径的开始位置移动指定的点 //参数一为点的X坐标 ,参数二为点的Y坐标,参数三为该点处开始宽度,对Po ...

  8. CAD参数绘制多行文字(com接口)

    在CAD设计时,需要绘制多行文字,用户可以设置设置绘制文字的高度等属性. 主要用到函数说明: _DMxDrawX::DrawMText 绘制一个多行文字.详细说明如下: 参数 说明 DOUBLE dP ...

  9. 查询SQLServer2005中某个数据库中的表结构、索引、视图、存储过程、触发器以及自定义函数

    查询SQLServer2005中某个数据库中的表结构.索引.视图.存储过程.触发器以及自定义函数 2013-03-11 09:05:06|  分类: SQL SERVER|举报|字号 订阅     ( ...

  10. java实现 数据结构:链表、 栈、 队列、优先级队列、哈希表

    java实现 数据结构:链表. 栈. 队列.优先级队列.哈希表   数据结构javavector工作importlist 最近在准备找工作的事情,就复习了一下java.翻了一下书和网上的教材,发现虽然 ...