Strongly connected-HDU4635
Problem - 4635 http://acm.hdu.edu.cn/showproblem.php?pid=4635
题目大意:
n个点,m条边,求最多再加几条边,然后这个图不是强连通
分析:
这是一个单向图,如果强连通的话,他最多应该有n*(n-1)条边,假设有a个强连通块,任取其中一个强连通块,假设取出的这个强连通块里有x个点,剩下的(n-a)个点看成一个强连通块,如果让这两个强连通块之间不联通,肯定是这两个只有一个方向的边,最多就会有x*(n-x)条边 所以最多加n*(n-1)-x*x(n-x)-m边。所以当x最小是式子最大。
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
If the original graph is strongly connected, just output -1.
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Case 2: 1
Case 3: 15
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector> using namespace std;
#define N 100005
#define INF 0x3f3f3f3f struct node
{
int to,next;
}edge[N*]; int low[N],dfn[N],Time,top,ans,Stack[N],belong[N],sum,head[N],aa[N],in[N],out[N],Is[N]; void Inn()
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(Stack,,sizeof(Stack));
memset(belong,,sizeof(belong));
memset(head,-,sizeof(head));
memset(aa,,sizeof(aa));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(Is,,sizeof(Is));
Time=top=ans=sum=;
} void add(int from,int to)
{
edge[ans].to=to;
edge[ans].next=head[from];
head[from]=ans++;
} void Tarjin(int u,int f)
{
low[u]=dfn[u]=++Time;
Stack[top++]=u;
Is[u]=;
int v;
for(int i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].to;
if(!dfn[v])
{
Tarjin(v,u);
low[u]=min(low[u],low[v]);
}
else if(Is[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
sum++;
do
{
v=Stack[--top];
belong[v]=sum;
aa[sum]++;
Is[v]=;
}while(v!=u);
}
} void solve(int n,int m)
{
for(int i=;i<=n;i++)
{
if(!dfn[i])
Tarjin(i,);
}
if(sum==)
{
printf("-1\n");
return ;
}
long long Max=;
for(int i=;i<=n;i++)
{
for(int j=head[i];j!=-;j=edge[j].next)
{
int u=belong[i];
int v=belong[edge[j].to];
if(u!=v)
{
in[v]++;
out[u]++;
}
}
}
long long c=n*(n-)-m;
for(int i=;i<=sum;i++)
{
if(!in[i] || !out[i])
Max=max(Max,c-(aa[i]*(n-aa[i])));
}
printf("%lld\n",Max);
}
int main()
{
int T,n,m,a,b,i,t=;
scanf("%d",&T);
while(T--)
{
Inn();
scanf("%d %d",&n,&m);
for(i=;i<m;i++)
{
scanf("%d %d",&a,&b);
add(a,b);
}
printf("Case %d: ",t++);
solve(n,m);
}
return ;
}
Strongly connected-HDU4635的更多相关文章
- Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
- cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
- HDU4625:Strongly connected(思维+强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
随机推荐
- Spark学习之Spark调优与调试(7)
Spark学习之Spark调优与调试(7) 1. 对Spark进行调优与调试通常需要修改Spark应用运行时配置的选项. 当创建一个SparkContext时就会创建一个SparkConf实例. 2. ...
- linux下安装xampp
Choose your flavor for your linux OS, the 32-bit or 64-bit version. Change the permissions to the in ...
- iOS Programming Touch Events and UIResponder
iOS Programming Touch Events and UIResponder 1 Touch Events As a subclass of UIResponder, a UIView ...
- table鼠标滑过变颜色
table鼠标滑过变颜色 添加 table tr:hover{background-color: #eee;} 设置鼠标滑过行背景变色,重新刷新浏览器页面. 一般设置灰色,eee
- 洛谷 P2341 [HAOI2006]受欢迎的牛
题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...
- CentOS 7 挂载ntfs磁盘格式的U盘
因为CentOS 默认不识别NTFS的磁盘格式,所以我们要借助另外一个软件来挂载,那就是ntfs-3g了 自带的yum源没有这个软件,要用第三方的软件源,这里我用的是阿里的epel. 1. 切换到系统 ...
- fedora下yum安装gnome和kde桌面 (有问题 )
转自: http://linux.chinaunix.net/techdoc/system/2009/08/31/1133198.shtml 1.1 安装KDE桌面环境 yum groupins ...
- BEGIN - 开始一个事务块
SYNOPSIS BEGIN [ WORK | TRANSACTION ] DESCRIPTION 描述 BEGIN 初始化一个事务块, 也就是说所有 BEGIN 命令后的用户语句都将在一个事务里面执 ...
- 01XML文档结构
文档结构 2.1文档结构 2.1.1文档声明及字符编码 <?xml version=“1.0” encoding=“”gb2312 standalone=“yes”?> <? 告诉 ...
- genymotion 双击打开后 图标只显示在任务栏 无法在电脑上显示
解决办法 删除 c:/users/user/AppData/local/Genymobile 例如:C:\Users\lenovo\AppData\Local\Genymobile 删除注册表:HK ...