Python实现决策树C4.5算法
为什么要改进成C4.5算法
- 原理
C4.5算法是在ID3算法上的一种改进,它与ID3算法最大的区别就是特征选择上有所不同,一个是基于信息增益比,一个是基于信息增益。
之所以这样做是因为信息增益倾向于选择取值比较多的特征(特征越多,条件熵(特征划分后的类别变量的熵)越小,信息增益就越大);因此在信息增益下面加一个分母,该分母是当前所选特征的熵,注意:这里而不是类别变量的熵了。
这样就构成了新的特征选择准则,叫做信息增益比。为什么加了这样一个分母就会消除ID3算法倾向于选择取值较多的特征呢?
因为特征取值越多,该特征的熵就越大,分母也就越大,所以信息增益比就会减小,而不是像信息增益那样增大了,一定程度消除了算法对特征取值范围的影响。
- 实现
在算法实现上,C4.5算法只是修改了信息增益计算的函数calcShannonEntOfFeature和最优特征选择函数chooseBestFeatureToSplit。
calcShannonEntOfFeature在ID3的calcShannonEnt函数上加了个参数feat,ID3中该函数只用计算类别变量的熵,而calcShannonEntOfFeature可以计算指定特征或者类别变量的熵。
chooseBestFeatureToSplit函数在计算好信息增益后,同时计算了当前特征的熵IV,然后相除得到信息增益比,以最大信息增益比作为最优特征。
在划分数据的时候,有可能出现特征取同一个值,那么该特征的熵为0,同时信息增益也为0(类别变量划分前后一样,因为特征只有一个取值),0/0没有意义,可以跳过该特征。
#coding=utf-8
import operator
from math import log
import time
import os, sys
import string def createDataSet(trainDataFile):
print trainDataFile
dataSet = []
try:
fin = open(trainDataFile)
for line in fin:
line = line.strip()
cols = line.split('\t')
row = [cols[1], cols[2], cols[3], cols[4], cols[5], cols[6], cols[7], cols[8], cols[9], cols[10], cols[0]]
dataSet.append(row)
#print row
except:
print 'Usage xxx.py trainDataFilePath'
sys.exit()
labels = ['cip1', 'cip2', 'cip3', 'cip4', 'sip1', 'sip2', 'sip3', 'sip4', 'sport', 'domain']
print 'dataSetlen', len(dataSet)
return dataSet, labels #calc shannon entropy of label or feature
def calcShannonEntOfFeature(dataSet, feat):
numEntries = len(dataSet)
labelCounts = {}
for feaVec in dataSet:
currentLabel = feaVec[feat]
if currentLabel not in labelCounts:
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob, 2)
return shannonEnt def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis]
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #last col is label
baseEntropy = calcShannonEntOfFeature(dataSet, -1)
bestInfoGainRate = 0.0
bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet]
uniqueVals = set(featList)
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet) / float(len(dataSet))
newEntropy += prob *calcShannonEntOfFeature(subDataSet, -1) #calc conditional entropy
infoGain = baseEntropy - newEntropy
iv = calcShannonEntOfFeature(dataSet, i)
if(iv == 0): #value of the feature is all same,infoGain and iv all equal 0, skip the feature
continue
infoGainRate = infoGain / iv
if infoGainRate > bestInfoGainRate:
bestInfoGainRate = infoGainRate
bestFeature = i
return bestFeature #feature is exhaustive, reture what you want label
def majorityCnt(classList):
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
return max(classCount) def createTree(dataSet, labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) ==len(classList): #all data is the same label
return classList[0]
if len(dataSet[0]) == 1: #all feature is exhaustive
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet)
bestFeatLabel = labels[bestFeat]
if(bestFeat == -1): #特征一样,但类别不一样,即类别与特征不相关,随机选第一个类别做分类结果
return classList[0]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat])
featValues = [example[bestFeat] for example in dataSet]
uniqueVals = set(featValues)
for value in uniqueVals:
subLabels = labels[:]
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
return myTree def main():
if(len(sys.argv) < 3):
print 'Usage xxx.py trainSet outputTreeFile'
sys.exit()
data,label = createDataSet(sys.argv[1])
t1 = time.clock()
myTree = createTree(data,label)
t2 = time.clock()
fout = open(sys.argv[2], 'w')
fout.write(str(myTree))
fout.close()
print 'execute for ',t2-t1
if __name__=='__main__':
main()
Python实现决策树C4.5算法的更多相关文章
- python实现决策树C4.5算法(在ID3基础上改进)
一.概论 C4.5主要是在ID3的基础上改进,ID3选择(属性)树节点是选择信息增益值最大的属性作为节点.而C4.5引入了新概念"信息增益率",C4.5是选择信息增益率最大的属性作 ...
- 02-22 决策树C4.5算法
目录 决策树C4.5算法 一.决策树C4.5算法学习目标 二.决策树C4.5算法详解 2.1 连续特征值离散化 2.2 信息增益比 2.3 剪枝 2.4 特征值加权 三.决策树C4.5算法流程 3.1 ...
- 决策树-C4.5算法(三)
在上述两篇的文章中主要讲述了决策树的基础,但是在实际的应用中经常用到C4.5算法,C4.5算法是以ID3算法为基础,他在ID3算法上做了如下的改进: 1) 用信息增益率来选择属性,克服了用信息增益选择 ...
- 决策树 -- C4.5算法
C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息 解释:数据集通过条件属性A的分离信息,其实和ID3中的熵: 2.信息增益率 解释:Gain(A)为获的A ...
- 决策树C4.5算法——计算步骤示例
使用决策树算法手动计算GOLF数据集 步骤: 1.通过信息增益率筛选分支. (1)共有4个自变量,分别计算每一个自变量的信息增益率. 首先计算outlook的信息增益.outlook的信息增益Gain ...
- 决策树(C4.5)原理
决策树c4.5算法是在决策树ID3上面演变而来. 在ID3中: 信息增益 按属性A划分数据集S的信息增益Gain(S,A)为样本集S的熵减去按属性A划分S后的样本子集的熵,即 在此基础上,C4.5计算 ...
- 决策树-预测隐形眼镜类型 (ID3算法,C4.5算法,CART算法,GINI指数,剪枝,随机森林)
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? ...
- 机器学习之决策树(ID3 、C4.5算法)
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决 ...
- 《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法
主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两 ...
随机推荐
- cocos2d-x交叉编译到安卓
ccocos2d-x是一个基于MIT协议的开源框架,用于构建游戏.应用程序和其它图形界面交互应用. 它的最大特点就是跨平台性,支持IOS, Android.Windows, WindowsPhone等 ...
- 数据库连接池-配置 wallfilter问题解决-UncategorizedSQLException
wallFilter对sql有着严格的校验,会对有风险的sql过滤,抛出异常信息: org.springframework.jdbc.UncategorizedSQLException: ### Er ...
- 贞鱼传教&&贞鱼传教(数据加强版)
http://acm.buaa.edu.cn/problem/1381/ 贞鱼传教[问题描述] 新的一年到来了,贞鱼哥决定到世界各地传授“贞教”,他想让“贞教”在2016年成为世界第四大宗教.说干就干 ...
- 前端如何展示商品属性:SKU多维属性状态判断算法的应用-Vue 实现
由于公司开发了一个电商项目,涉及到前台商品属性的展示,所以百度上找了一下!找到了 周琪力写的一个算法例子,因为作者只有jQuery 实现demo, 自己仿照 demo 实现了一个 vue 的! 周琪力 ...
- java24点算法
输入任意的四个数,求出所有能得到二十四点的算式,不过我是菜鸟,可能性能方面不好,希望各位多多指教1. [代码][Java]代码 import java.util.ArrayList;impo ...
- hdu 4398 Template Library Management(贪心+stl)
题意:n道题,每道题需要一个模板,现在手头有m个模板(标号1~m),解题的时候,如果没有需要的模板,可以向朋友借,但是用完之后必须在还给朋友一个模板(也就是说保持手头拥有m个模板),求解完n道题最少需 ...
- I.MX6 MAC地址修改
/*********************************************************************** * I.MX6 MAC地址修改 * 说明: * I.M ...
- QT官网开源版下载引导(不用登录QT账号)
一.进入QT官网下载页,首先映入眼前的就是一幅用户选择的调查引导,如下图 二.上图页面显示的可以忽略,直接在上图下载页面上下拉至底部,选择OpenSource->Get started即可进行下 ...
- VS2008 视图资源.rc无法加载的问题及解决方法
VS2008 视图资源.rc无法加载 1.首先先把vs关闭,然后执行 开始>>所有程序>>Mircosoft visual studio 2008>>visual ...
- File System Programming---(三)
Accessing Files and Directories Before you can open a file, you first have to locate it in the file ...