spoj-TSUM Triple Sums
题解:
很吊的容斥+$FFT$,但是并不难。
首先,由于有重复,我们要容斥。
怎么办?
记录三个多项式,
只取一个:$w1$;
相同物体拿两个:$w2$;
相同物体拿三个:$w3$;
然后答案能推出来是$(w1*w1*w1-3*w1*w2+2*w3)/6$;
然后$FFT$瞎搞就行了。
注意有负数,同时扩大再瞎搞。
代码:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 300000
#define ll long long
const double Pi = acos(-1.0);
template<typename T>
inline void read(T&x)
{
T f=,c=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
struct cp
{
double x,y;
cp(){}
cp(double x,double y):x(x),y(y){}
cp operator + (const cp &a)const{return cp(x+a.x,y+a.y);}
cp operator - (const cp &a)const{return cp(x-a.x,y-a.y);}
cp operator * (const cp &a)const{return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
};
int to[N];
void fft(cp *a,int len,int k)
{
for(int i=;i<len;i++)
if(i<to[i])swap(a[i],a[to[i]]);
for(int i=;i<len;i<<=)
{
cp w0(cos(Pi/i),k*sin(Pi/i));
for(int j=;j<len;j+=(i<<))
{
cp w(,);
for(int o=;o<i;o++,w=w*w0)
{
cp w1 = a[j+o],w2 = w*a[j+o+i];
a[j+o] = w1+w2;
a[j+o+i] = w1-w2;
}
}
}
if(k==-)
for(int i=;i<len;i++)
a[i].x=(ll)round(a[i].x/len+0.1);
}
int n,a[N],lim=,l;
cp w1[N],w2[N],w3[N],w4[N],w5[N];
int main()
{
// freopen("tt.in","r",stdin);
read(n);
for(int i=;i<=n;i++)
{
read(a[i]);
a[i]+=;
}
while(lim<)lim<<=,l++;
for(int i=;i<lim;i++)to[i]=((to[i>>]>>)|((i&)<<(l-)));
for(int i=;i<=n;i++)
{
w1[a[i]].x++;
w2[a[i]*].x++;
w3[a[i]*].x++;
}
fft(w1,lim,),fft(w2,lim,);
for(int i=;i<lim;i++)
{
w4[i] = w1[i]*w1[i]*w1[i];
w5[i] = w1[i]*w2[i];
}
fft(w4,lim,-),fft(w5,lim,-);
for(int i=;i<=;i++)
{
ll tmp = (ll)(w4[i].x-*w5[i].x+*w3[i].x+0.1)/;
if(tmp)
printf("%d : %lld\n",i-,tmp);
}
return ;
}
spoj-TSUM Triple Sums的更多相关文章
- SPOJ TSUM Triple Sums(FFT + 容斥)
题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...
- spoj TSUM - Triple Sums fft+容斥
题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...
- SPOJ:Triple Sums(母函数+FFT)
You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...
- Spoj 8372 Triple Sums
题意:给你n个数字,对于任意s,s满足\(s=u_i+u_j+u_k,i<j<k\),要求出所有的s和对应满足条件的i,j,k的方案数 Solution: 构造一个函数:\(A(x)=\s ...
- 2018.11.18 spoj Triple Sums(容斥原理+fft)
传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai,aj,ak( ...
- SPOJ Triple Sums(FFT+容斥原理)
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...
- SPOJ - Triple Sums
[传送门] FFT第一题! 构造多项式 $A(x) = \sum x ^ {s_i}$. 不考虑题目中 $i < j < k$ 的条件,那么 $A^3(x)$ 每一项对应的系数就是答案了. ...
- SPOJ - TSUM 母函数+FFT+容斥
题意:n个数,任取三个加起来,问每个可能的结果的方案数. 题解:构造母函数ABC,比如现在有 1 2 3 三个数.则 其中B表示同一个数加两次,C表示用三次.然后考虑去重. A^3表示可重复地拿三个. ...
- [SP8372-TSUM]Triple Sums
题面在这里 description 某\(B\)姓\(OJ\)权限题 给出\(n\)个正整数\(a[i]\),求\(i<j<k\)且\(S=a[i]+a[j]+a[k]\)的三元组\((i ...
随机推荐
- VS代码中常用 正则表达式
1. #define ABC 1 修改为 enum 样式: #define (.+?)\s+(.+?)$ $1 = $2 ,
- poj 2412 The Balance 【exgcd】By cellur925
题目传送门 一遇到数学就卡住,我这是怎么肥4...(或许到图论会愉悦吧,逃) Description * 给出两种重量为的 A, B 的砝码,给出一种使用最少的砝码的方式,称出重量 C. 我们可以比较 ...
- Java关键字abstract与final总结
关键字:abstract 用来修饰抽象类与抽象类中的方法 抽象类需要注意的几点: 抽象类不能被实例化.抽象类可以包含属性:方法:构造方法,但是构造方法不能用来new实例,只能被子类调用 有抽象方法的类 ...
- nginx添加模块
[root@VM_0_3_centos nginx]# ./sbin/nginx -V nginx version: nginx/1.12.2 built by gcc 4.8.5 20150623 ...
- python操作pymongo
import pymongo from bson import ObjectId mongo_client = pymongo.MongoClient(host="127.0.0.1&quo ...
- 关于itchat用法的一篇博文
itchat的原理就是利用爬虫爬取了网页版微信的内容,并进行一系列的操作,运用微信,通过手机与电脑时登录的互通性,可以实现用微信对电脑的操作,通过itchat.msg_register方法,可以得到目 ...
- and or类比c中的 bool?a :b
a = "heaven" b = "hell" c = True and a or b print c d = False and a or b ...
- 爬虫中动态的POST参数
爬虫的过程中,有的网站提交POST数据时候每次都会带上不懂POST参数,要想爬到数据首先的知道怎么构造这些动态的参数. 1.分析提交POST数据的最原始网页,分析原始网页的源代码,查找里面是否包含有你 ...
- P1615 西游记公司
题目背景 一道极其无厘头的题目 题目描述 事情是这样的:西游记中的孙沙猪(孙杀猪)三徒弟在西天取经之后开始进入厦门大学经贸系学习经济,在1个小时的学习后,他们用暴力手段毕业了.然后,他们创办了三个公司 ...
- 开始bootstrap的学习
终于过完双十一,服务器顶住了压力,不知道为啥,突然的轻松,反而感觉有点无所适从,好久没写博客了,竟然发现还有人回我,很是开心,问题都是关于阿里云的,阿里云的吭确实多,其实关键在于,官方文档还是少,出了 ...