题目描述

题解:

很吊的容斥+$FFT$,但是并不难。

首先,由于有重复,我们要容斥。

怎么办?

记录三个多项式,

只取一个:$w1$;

相同物体拿两个:$w2$;

相同物体拿三个:$w3$;

然后答案能推出来是$(w1*w1*w1-3*w1*w2+2*w3)/6$;

然后$FFT$瞎搞就行了。

注意有负数,同时扩大再瞎搞。

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 300000
#define ll long long
const double Pi = acos(-1.0);
template<typename T>
inline void read(T&x)
{
T f=,c=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){c=c*+ch-'';ch=getchar();}
x = f*c;
}
struct cp
{
double x,y;
cp(){}
cp(double x,double y):x(x),y(y){}
cp operator + (const cp &a)const{return cp(x+a.x,y+a.y);}
cp operator - (const cp &a)const{return cp(x-a.x,y-a.y);}
cp operator * (const cp &a)const{return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
};
int to[N];
void fft(cp *a,int len,int k)
{
for(int i=;i<len;i++)
if(i<to[i])swap(a[i],a[to[i]]);
for(int i=;i<len;i<<=)
{
cp w0(cos(Pi/i),k*sin(Pi/i));
for(int j=;j<len;j+=(i<<))
{
cp w(,);
for(int o=;o<i;o++,w=w*w0)
{
cp w1 = a[j+o],w2 = w*a[j+o+i];
a[j+o] = w1+w2;
a[j+o+i] = w1-w2;
}
}
}
if(k==-)
for(int i=;i<len;i++)
a[i].x=(ll)round(a[i].x/len+0.1);
}
int n,a[N],lim=,l;
cp w1[N],w2[N],w3[N],w4[N],w5[N];
int main()
{
// freopen("tt.in","r",stdin);
read(n);
for(int i=;i<=n;i++)
{
read(a[i]);
a[i]+=;
}
while(lim<)lim<<=,l++;
for(int i=;i<lim;i++)to[i]=((to[i>>]>>)|((i&)<<(l-)));
for(int i=;i<=n;i++)
{
w1[a[i]].x++;
w2[a[i]*].x++;
w3[a[i]*].x++;
}
fft(w1,lim,),fft(w2,lim,);
for(int i=;i<lim;i++)
{
w4[i] = w1[i]*w1[i]*w1[i];
w5[i] = w1[i]*w2[i];
}
fft(w4,lim,-),fft(w5,lim,-);
for(int i=;i<=;i++)
{
ll tmp = (ll)(w4[i].x-*w5[i].x+*w3[i].x+0.1)/;
if(tmp)
printf("%d : %lld\n",i-,tmp);
}
return ;
}

spoj-TSUM Triple Sums的更多相关文章

  1. SPOJ TSUM Triple Sums(FFT + 容斥)

    题目 Source http://www.spoj.com/problems/TSUM/ Description You're given a sequence s of N distinct int ...

  2. spoj TSUM - Triple Sums fft+容斥

    题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...

  3. SPOJ:Triple Sums(母函数+FFT)

    You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...

  4. Spoj 8372 Triple Sums

    题意:给你n个数字,对于任意s,s满足\(s=u_i+u_j+u_k,i<j<k\),要求出所有的s和对应满足条件的i,j,k的方案数 Solution: 构造一个函数:\(A(x)=\s ...

  5. 2018.11.18 spoj Triple Sums(容斥原理+fft)

    传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai​,aj​,ak​( ...

  6. SPOJ Triple Sums(FFT+容斥原理)

    # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream& ...

  7. SPOJ - Triple Sums

    [传送门] FFT第一题! 构造多项式 $A(x) = \sum x ^ {s_i}$. 不考虑题目中 $i < j < k$ 的条件,那么 $A^3(x)$ 每一项对应的系数就是答案了. ...

  8. SPOJ - TSUM 母函数+FFT+容斥

    题意:n个数,任取三个加起来,问每个可能的结果的方案数. 题解:构造母函数ABC,比如现在有 1 2 3 三个数.则 其中B表示同一个数加两次,C表示用三次.然后考虑去重. A^3表示可重复地拿三个. ...

  9. [SP8372-TSUM]Triple Sums

    题面在这里 description 某\(B\)姓\(OJ\)权限题 给出\(n\)个正整数\(a[i]\),求\(i<j<k\)且\(S=a[i]+a[j]+a[k]\)的三元组\((i ...

随机推荐

  1. PTA 模拟,【放着一定要写哈哈哈哈哈】(据说用string哟)

    实现一种简单原始的文件相似度计算,即以两文件的公共词汇占总词汇的比例来定义相似度.为简化问题,这里不考虑中文(因为分词太难了),只考虑长度不小于3.且不超过10的英文单词,长度超过10的只考虑前10个 ...

  2. hihoCoder搜索二·骑士问题

    #include <stdio.h> #include <string.h> #include <math.h> #include <algorithm> ...

  3. [官方教程] Unity 5 BLACKSMITH深度分享 - 汇总帖

    BLACKSMITH深度分享系列 相信此大片在Unite上的惊艳亮相,让许多人至今无法忘却它所带来的震撼,Unity的大师们为了让更多Unity开发者了解此大片是如何用Unity5诞生的,深度分享了多 ...

  4. 面向对象-self这个特殊的参数

    self: 1.只是一个参数. 2.在对象使用方法的时候,当前对象会作为第一个参数的实参传入 3.self相当于语言中的代词,表示当前对象本身(其他语言中也有使用this) 4.self的作用连接整个 ...

  5. iOS UITextView自适应高度UITextContainerView抖动问题

    在打造一个类似于微信朋友圈评论输入框的时候,需要动态调整输入框的高度, 但是,在调整了UITextView的高度之后,继续输入会导致内容(UITextContainerView里的文字)抖动. scr ...

  6. MVC 感触

    这几天接触了下 ef+ MVC+WEBAPI +bootstrop VIEW--->Controller  -->WebAPI  ---Model (Linq) 记住 VIEW里的 csh ...

  7. 使用Ctex中遇到的一些问题

    一般下载好Ctex,我是使用Latex+dvi2pdf完成编译的,但是发现推荐的使用为:1)运行CCT & Latex命令生成两次dvi和ps文件 2)使用dvi2pdf编译dvi文件生成pd ...

  8. _bzoj1029 [JSOI2007]建筑抢修【贪心 堆】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1029 经典的贪心问题,不解释. #include <cstdio> #inclu ...

  9. 线段树(单点更新) POJ 2886 Who Gets the Most Candies?

    题目传送门 #include <cstdio> #include <cstring> #define lson l, m, rt << 1 #define rson ...

  10. 面试王牌 JAVA并发

    Java 并发 JavathreadSocketC#C++ 并发 Table of Contents 1 什么是并发问题. 2多线程死锁问题 2 java中synchronized的用法 3 Java ...