Educational Codeforces Round 37 (Rated for Div. 2) G
5 seconds
256 megabytes
standard input
standard output
Let's denote as L(x, p) an infinite sequence of integers y such that gcd(p, y) = 1 and y > x (where gcd is the greatest common divisor of two integer numbers), sorted in ascending order. The elements of L(x, p) are 1-indexed; for example, 9, 13 and 15 are the first, the second and the third elements of L(7, 22), respectively.
You have to process t queries. Each query is denoted by three integers x, p and k, and the answer to this query is k-th element of L(x, p).
The first line contains one integer t (1 ≤ t ≤ 30000) — the number of queries to process.
Then t lines follow. i-th line contains three integers x, p and k for i-th query (1 ≤ x, p, k ≤ 106).
Print t integers, where i-th integer is the answer to i-th query.
3
7 22 1
7 22 2
7 22 3
9
13
15
5
42 42 42
43 43 43
44 44 44
45 45 45
46 46 46
187
87
139
128
141 题意 q个询问 大于x,第k个与p互质的数
解析 对于一个数 mid 我们可以容斥算出1-mid 与 p互质的数有多少,所以二分答案就可以了。
AC代码
#include <bits/stdc++.h>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n")
#define debug(a,b) cout<<a<<" "<<b<<" "<<endl
#define ffread(a) fastIO::read(a)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn=1e4+;
const ll mod=;
ll yinzi[maxn],cnt;
void euler(ll n)
{
cnt=;
ll a=n;
for(ll i=; i*i<=a; i++)
{
if(a%i==)
{
yinzi[cnt++]=i;
while(a%i==)
a/=i;
}
}
if(a>)
yinzi[cnt++]=a;
}
ll solve(ll n)
{
ll ans=;
for(ll i=; i<(<<cnt); i++)
{
ll temp=,jishu=;
for(ll j=; j<cnt; j++)
{
if(i&(<<j))
temp=temp*yinzi[j],jishu++;
}
if(jishu==)
continue;
if(jishu&)
ans+=n/temp;
else
ans-=n/temp;
}
return ans;
}
int main()
{
ll t,n,m,k;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld%lld",&m,&n,&k);
euler(n);
ll ans1=m-solve(m);
ll l=m+,r=1e7;
while(l<=r)
{
ll mid=(l+r)/;
ll cur=mid-solve(mid)-ans1;
if(cur<k)
l=mid+;
else
r=mid-;
}
printf("%lld\n",r+);
}
}
Educational Codeforces Round 37 (Rated for Div. 2) G的更多相关文章
- Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements (思维,前缀和)
Educational Codeforces Round 37 (Rated for Div. 2)C. Swap Adjacent Elements time limit per test 1 se ...
- Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
- Educational Codeforces Round 37 (Rated for Div. 2) 920E E. Connected Components?
题 OvO http://codeforces.com/contest/920/problem/E 解 模拟一遍…… 1.首先把所有数放到一个集合 s 中,并创建一个队列 que 2.然后每次随便取一 ...
- Educational Codeforces Round 37 (Rated for Div. 2)
我的代码应该不会被hack,立个flag A. Water The Garden time limit per test 1 second memory limit per test 256 mega ...
- [Codeforces]Educational Codeforces Round 37 (Rated for Div. 2)
Water The Garden #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h ...
- Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论
E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...
- Educational Codeforces Round 58 (Rated for Div. 2) G 线性基
https://codeforces.com/contest/1101/problem/G 题意 一个有n个数字的数组a[],将区间分成尽可能多段,使得段之间的相互组合异或和不等于零 题解 根据线性基 ...
- Educational Codeforces Round 53 (Rated for Div. 2)G. Yet Another LCP Problem
题意:给串s,每次询问k个数a,l个数b,问a和b作为后缀的lcp的综合 题解:和bzoj3879类似,反向sam日神仙...lcp就是fail树上的lca.把点抠出来建虚树,然后在上面dp即可.(感 ...
- Educational Codeforces Round 51 (Rated for Div. 2) G. Distinctification(线段树合并 + 并查集)
题意 给出一个长度为 \(n\) 序列 , 每个位置有 \(a_i , b_i\) 两个参数 , \(b_i\) 互不相同 ,你可以进行任意次如下的两种操作 : 若存在 \(j \not = i\) ...
随机推荐
- git 配置免密上传,配置ssh key
1.windows 打开git bash 控制台,linux 直接打开命令控制台,输入 ssh-keygen 一直enter 下一步 2.生成的文件windows 存放在c://users 路径下,l ...
- Xilinx器件原语
原语,其英文名为primitive,是FPGA厂商针对其器件特征开发的一系列常用模块的名称.原语是FPGA芯片中基本元件,代表FPGA中实际拥有的硬件逻辑单元,如LUT,D触发器,RAM等.相当于软件 ...
- 盘点那些年,被Oracle收购的公司
微博上看到一图,很清晰.盘点那些年,被Oracle收购的公司,Oracle日益强大,都收购了哪些公司呢?别再以为只有Sun啦...看看你都知道哪些? ps:Strategic Acquisitions ...
- IntelliJ IDEA openfire 使用IntelliJ IDEA 部署OPENFIRE 服务端
用MyEclipse部署OF的步骤,网上有很多,可以自行google,这里要记录的是用据说最好用的JAVA编辑器IntelliJ IDEA来部署OF服务端.试了好多下,终于成功了,记录下. 直接上图吧 ...
- 在uwp仿IOS的页面切换效果
有时候我们需要编写一些迎合IOS用户使用习惯的uwp应用,我在这里整理一下仿IOS页面切换效果的代码. 先分析IOS的页面切换.用户使用左右滑动方式进行前进和后退,播放类似于FlipView的切换动画 ...
- react中的jsx详细理解
这是官网上的一个简单的例子 const name = 'Josh Perez'; const element = <h1>Hello, {name}</h1>; ReactDO ...
- 通过JS加载XML文件,跨浏览器兼容
引言 通过JS加载XML文件,跨多种浏览器兼容. 在Chrome中,没有load方法,需要特殊处理! 解决方案 部分代码 try //Internet Explorer { xmlDoc=new Ac ...
- JS 中的事件绑定、事件监听、事件委托是什么?
在JavaScript的学习中,我们经常会遇到JavaScript的事件机制,例如,事件绑定.事件监听.事件委托(事件代理)等.这些名词是什么意思呢,有什么作用呢? 事件绑定 要想让 JavaScri ...
- vue props 下有验证器 validator 验证数据返回true false后,false给default值
vue props 下有验证器 validator 验证数据返回true false后,false给default值 props: { type: { validator (value) { retu ...
- Java之字符,字符串替换
/** 4. 字符串的替换操作 1. String replace(char oldChar,char newChar) //将新字符替换旧字符 3. String replaceFirst(Stri ...