bzoj3527
http://www.lydsy.com/JudgeOnline/problem.php?id=3527
今天肿么这么颓废啊。。。心态崩了
首先我们得出Ei=Fi/qj,然后我们设f[i]=1/i/i,那么我们把刚才的式子转化一下,就是ans[j]=f[i]*g[j-i]-f[i]*g[i-j](sigma省略了)前面的东西是一个卷积,但是后面的东西加出来是一个2*i-j,不是一个固定的值,那么我们翻转一下第二个g,变成了-f[i]*g[n-i+j],现在i+n-i+j=n+j是一个固定的值(似乎固定是指在当前sigma下是固定的就可以了),那么就好了。
#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
const int N = ;
int n, m, l;
int r[N];
complex<double> a[N], b[N], q[N];
void fft(complex<double> *a, int f)
{
for(int i = ; i <= n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> w(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> wn(, );
for(int k = ; k < i; ++k, wn *= w)
{
complex<double> x = a[j + k], y = wn * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
if(f == -) for(int i = ; i <= n; ++i) a[i] /= n;
}
int main()
{
scanf("%d", &n); --n; m = * n;
for(int i = ; i <= n; ++i)
{
double x; scanf("%lf", &x);
if(i > ) a[i] = b[n - i] = 1.0 / (double)i / (double)i;
else a[i] = b[n - i] = ;
q[i] = x;
}
for(n = ; n <= m; n <<= ) ++l;
for(int i = ; i <= n; ++i) r[i] = (r[i >> ] >> ) | ((i & ) << (l - ));
fft(a, ); fft(b, ); fft(q, );
for(int i = ; i <= n; ++i) a[i] = q[i] * a[i], b[i] = q[i] * b[i];
fft(a, -); fft(b, -);
for(int i = ; i <= m / ; ++i) printf("%.3f\n", a[i].real() - b[i + m / ].real());
return ;
}
bzoj3527的更多相关文章
- 【BZOJ3527】力(FFT)
[BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【bzoj3527】 Zjoi2014—力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 (题目链接) 题意 $${F_i=\sum_{j<i} {\frac{q_iq_j}{( ...
- 【BZOJ3527】[ZJOI3527]力
[BZOJ3527][ZJOI3527]力 题面 bzoj 洛谷 题解 易得 \[ E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}-\sum_{j>i}\frac{q_ ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- 【BZOJ3527】[ZJOI2014] 力(FFT)
题目: BZOJ3527 分析: FFT应用第一题-- 首先很明显能把\(F_j\)约掉,变成: \[E_j=\sum _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- BZOJ3527 推出卷积公式FFT求值
BZOJ3527 推出卷积公式FFT求值 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 题意: \(F_{j}=\sum_{i&l ...
- BZOJ3527[ZJOI]力
无题面神题 原题意: 求所有的Ei=Fi/qi. 题解: qi被除掉了,则原式中的qj可以忽略. 用a[i]表示q[i],用b[j-i]来表示±1/((j-i)^2)(j>i时为正,j<i ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 【bzoj3527】[Zjoi2014]力 FFT
2016-06-01 21:36:44 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 我就是一个大傻叉 微笑脸 #include&l ...
随机推荐
- Oracle 11g 字符集修改
服务端字符集修改 1.确认服务端字符集 select userenv('language') from dual; 2.修改服务端字符集 首先以 DBA 身份登录 Oracle.Windows 系统下 ...
- BZOJ 2693: jzptab 莫比乌斯反演 + 积性函数 +筛法
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #d ...
- 简单的jsonp实现跨域原理
什么原因使jsonp诞生? 传说,浏览器有一个很重要的安全限制,叫做"同源策略".同源是指,域名,协议,端口相同.举个例子,用一个浏览器分别打开了百度和谷歌页面,百度页面在执行脚 ...
- java用递归输出目录结构
package com.janson.day20180827; import java.io.File; public class TestTreeStructureDirectory { publi ...
- Oracle 数据库启动与关闭 各种方式详解整理
概述 只有具备sysdba和sysoper系统特权的用户才能启动和关闭数据库. 在启动数据库之前应该启动监听程序,否则就不能利用命令方式来管理数据库,包括启动和关闭数据库. 虽然数据库正常运行,但如果 ...
- Laravel学习:请求到响应的生命周期
Laravel请求到响应的整个执行过程,主要可以归纳为四个阶段,即程序启动准备阶段.请求实例化阶段.请求处理阶段.响应发送和程序终止阶段. 程序启动准备阶段 服务容器实例化 服务容器的实例化和基本注册 ...
- msdn的原版windows下载地址链接
http://msdn.itellyou.cn/ 所有版本的下载地址 进去点左边操作系统
- Navicat premium连接Oracle报ORA-12541错误
1:ORA-12541 原因:Oracle TNS监听服务没开 解决:
- MongoDB 数据文件备份与恢复
备份与恢复数据对于管理任何数据存储系统来说都是非常重要的. 1.冷备份与恢复——创建数据文件的副本(前提是要停止MongoDB服务器),也就是直接copy MongoDB将所有数据都存储在数据目录下, ...
- 最小公倍数LCM
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= ...