传送门

我数学可能白学了……

因为三个数加起来等于\(1\),那么只要用前两个数就能表示,那么就能把每一种金属看成一个二维向量。考虑只有两个向量的时候,设这两个向量为\(a,b\),那么一个向量\(c\)能被表示也就是说存在\(ax+by=c\)且\(x+y=1\),根据数学老师说的那么\(c\)在\(a\)和\(b\)的终点连成的直线上,那么这里因为\(x\)和\(y\)非负所以是在这条线段上。推广一下(我也不知道怎么推广),有\(n\)个向量的时候能表示的范围就在这\(n\)个点的凸包里

于是就转化为求一个合金构成的点数最少的凸包且要完全包住顾客的凸包

那么就枚举所有的点对,如果所有顾客都在\((i,j)\)这条边的同一侧,那么就加入这条边。最后跑一个floyd求最小环

//minamoto
#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define eps 1e-10
using namespace std;
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
const int N=505;
struct node{
double x,y;
node(){}
node(double x,double y):x(x),y(y){}
}p[N],e[N];
double cross(node a,node b,node c){return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);}
inline bool check(node a,node b,node c){return (a.x>c.x&&b.x>c.x)||(a.x<c.x&&b.x<c.x)||(a.y>c.y&&b.y>c.y)||(a.y<c.y&&b.y<c.y);}
int g[N][N];bool flag;double res;int mn=0x3f3f3f3f;
//inline double abs(double x){return x<0?-x:x;}
int main(){
// freopen("testdata.in","r",stdin);
int n,m;scanf("%d%d",&m,&n);
fp(i,1,m)scanf("%lf%lf%lf",&e[i].x,&e[i].y,&res);
fp(i,1,n)scanf("%lf%lf%lf",&p[i].x,&p[i].y,&res);
fp(i,1,m){
flag=true;
fp(j,1,n)if(abs(e[i].x-p[j].x)>eps||abs(e[i].y-p[j].y)>eps){flag=false;break;}
if(flag)return puts("1"),0;
}
memset(g,0x3f,sizeof(g));
fp(i,1,m)fp(j,1,m)if(i!=j){
if(abs(e[i].x-e[j].x<eps)&&abs(e[i].y-e[j].y)<eps)continue;
flag=true;
fp(k,1,n)if(cross(e[i],e[j],p[k])<-eps){flag=false;break;}
if(!flag)continue;
fp(k,1,n){
res=cross(e[i],e[j],p[k]);
if(res<eps&&res>-eps&&check(e[i],e[j],p[k])){flag=false;break;}
}
if(flag)g[i][j]=1;
}
fp(k,1,m)fp(i,1,m)fp(j,1,m)cmin(g[i][j],g[i][k]+g[k][j]);
fp(i,1,m)fp(j,1,m)
cmin(mn,i==j?g[i][j]:g[i][j]+g[j][i]);
printf("%d\n",mn>m?-1:mn);return 0;
}

P4049 [JSOI2007]合金的更多相关文章

  1. bzoj1027 [JSOI2007]合金

    1027: [JSOI2007]合金 Time Limit: 4 Sec  Memory Limit: 162 MBSubmit: 2671  Solved: 703[Submit][Status][ ...

  2. bzoj 1027 [JSOI2007]合金(计算几何+floyd最小环)

    1027: [JSOI2007]合金 Time Limit: 4 Sec  Memory Limit: 162 MBSubmit: 2970  Solved: 787[Submit][Status][ ...

  3. BZOJ 1027 [JSOI2007]合金

    1027: [JSOI2007]合金 Time Limit: 4 Sec  Memory Limit: 162 MBSubmit: 2605  Solved: 692[Submit][Status][ ...

  4. bzoj千题计划123:bzoj1027: [JSOI2007]合金

    http://www.lydsy.com/JudgeOnline/problem.php?id=1027 因为x+y+z=1,所以z=1-x-y 第三维可以忽略 将x,y 看做 平面上的点 简化问题: ...

  5. [bzoj 1027][JSOI2007]合金(解析几何+最小环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1027 分析: 首先因为一个合金的和为1,所以考虑2个材料合金能否合成一个需求合金的时候 ...

  6. 1027: [JSOI2007]合金 - BZOJ

    Description 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的 ...

  7. [JSOI2007]合金

    Description 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的 原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新 ...

  8. BZOJ1027 [JSOI2007]合金 【计算几何 + floyd】

    题目 某公司加工一种由铁.铝.锡组成的合金.他们的工作很简单.首先进口一些铁铝锡合金原材料,不同种类的 原材料中铁铝锡的比重不同.然后,将每种原材料取出一定量,经过融解.混合,得到新的合金.新的合金的 ...

  9. BZOJ 1027 JSOI2007 合金 计算几何+Floyd

    题目大意:给定一些合金,选择最少的合金,使这些合金能够按比例合成要求的合金 首先这题的想法特别奇异 看这题干怎么会想到计算几何 并且计算几何又怎么会跟Floyd挂边 好强大 首先因为a+b+c=1 所 ...

随机推荐

  1. 「 Luogu P2285 」打鼹鼠

    解题思路 第一眼看上去觉得要设计一个三维的 DP,$dp[i][j][k]$ 表示在 $(i,j)$ 这个位置上 $k$ 时刻能够打死的最多的鼹鼠. 但是被数据范围卡死.完全开不开数组啊. 然后注意到 ...

  2. 服务器做ssh免秘钥登陆

    集群内服务器做非root用户免秘钥登陆:1.node1新建用户abc1,制作公钥.私钥(一路回车键即可)ssh-keygen –t rsa将自动在/home/abc1/.ssh/目录下创建公私钥文件如 ...

  3. Python学习-字符串函数操作2

    字符串函数操作 find( sub, start=None, end=None):从左到右开始查找目标子序列,找到了结束查找返回下标值,没找到返回 -1 sub:需要查找的字符串 start=None ...

  4. CentOS \Linux文件权限详解

    文件和目录权限概述 在linux中的每一个文件或目录都包含有访问权限,这些访问权限决定了谁能访问和如何访问这些文件和目录. 通过设定权限可以从以下三种访问方式限制访问权限:只允许用户自己访问:允许一个 ...

  5. calculate Cp history (from Fluent) using Matlab

    input data : unscaled time history of moment/thrust from ANSYS fluent example of input data, "m ...

  6. Linux 复习四

    第四章 shell程序设计I-入门 一.shell脚本的基本概念 shell脚本(script)是一个可执行的纯文本文件,有多个shell命令组成. 命令的执行时从上而下.从左而右的分析和执行 命令. ...

  7. Spring核心技术(一)——IoC容器和Bean简介

    IoC容器和Bean简介 这章包括了Spring框架对于IoC规则的实现.Ioc也同DI(依赖注入).而对象是通过构造函数,工厂方法,或者一些Set方法来定义对象之间的依赖的.容器在创建这些Bean对 ...

  8. linux常用命令大全(linux基础命令+命令备忘录+面试复习)

    linux常用命令大全(linux基础命令+命令备忘录+面试复习)-----https://www.cnblogs.com/caozy/p/9261224.html

  9. 53. spring boot系列合集【从零开始学Spring Boot】

    前40章节的spring boot系列已经打包成PDF在csdn进行发布了,如果有需要的可以进行下载. 下载地址:http://download.csdn.net/detail/linxinglian ...

  10. 48. spring boot单元测试restfull API【从零开始学Spring Boot】

    回顾并详细说明一下在在之前章节中的中使用的@Controller.@RestController.@RequestMapping注解.如果您对Spring MVC不熟悉并且还没有尝试过快速入门案例,建 ...