最长不下降子序列 (O(nlogn)算法)
分析:
定义状态dp[i]表示长度为i的最长不下降子序列最大的那个数。
每次进来一个数直接找到dp数组第一个大于于它的数dp[x],并把dp[x - 1]修改成 那个数。就可以了
AC代码:
# include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
using namespace std;
const int N = ;
int dp[N],n,pre[N],x,y,xh[N],a[N];
void out(int k){
if(k)out(pre[k]);else return;
printf("%d ",a[k]);
}
int main(){
memset(dp,0x3f3f3f3f,sizeof dp);
for(int i = ;i <= n;i++){
scanf("%d",&a[i]);
y = upper_bound(dp + ,dp + n + ,a[i]) - dp;
dp[y] = a[i];
xh[y] = i;
pre[i] = xh[y - ];
}
int len = lower_bound(dp + ,dp + n + ,dp[]) - dp - ;
printf("%d\n",len);
out(xh[len]);
return ;
}
最长不下降子序列 (O(nlogn)算法)的更多相关文章
- 求最长不下降子序列(nlogn)
最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长 ...
- 最长不下降子序列 O(nlogn) || 记忆化搜索
#include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...
- 【动态规划】【二分】【最长不下降子序列】洛谷 P1020 导弹拦截
最长不下降子序列的nlogn算法 见 http://www.cnblogs.com/mengxm-lincf/archive/2011/07/12/2104745.html 这题是最长不上升子序列,倒 ...
- [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]
Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- 最长不下降子序列nlogn算法详解
今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...
- hdu1025 最长不下降子序列nlogn算法
C - DP Crawling in process... Crawling failed Time Limit:1000MS Memory Limit:32768KB 64bit I ...
- 最长不下降子序列 nlogn && 输出序列
最长不下降子序列实现: 利用序列的单调性. 对于任意一个单调序列,如 1 2 3 4 5(是单增的),若这时向序列尾部增添一个数 x,我们只会在意 x 和 5 的大小,若 x>5,增添成功,反之 ...
- 算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】
先学习下LIS最长上升子序列 看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还 ...
随机推荐
- Kali 2017.3开启VNC远程桌面登录
通过启用屏幕共享来开启远程桌面登录,开启后需要关闭encryption,否则会出现无法连接的情况.关闭encryption可以使用系统配置工具dconf来完成.所以先安装dconf-editor. 更 ...
- 一个JSON字符串和文件处理的命令行神器jq,windows和linux都可用
这个命令行神器的下载地址:https://stedolan.github.io/jq/# Windows和Linux版本均只有两个可执行文件,大小不过2MB多. 以Windows版本为例,介绍其用法. ...
- Android(java)学习笔记169:服务(service)之为什么使用服务
1.服务 service 长期在后台运行的进程,一般没有应用程序界面 2.进程线程和应用程序之间的关系 应用程序开启,系统启动一个Linux进程,所有的组件都是运行在同一个进程的同一个线程(mai ...
- Java8函数式编程和lambda表达式
文章目录函数式编程JDK8接口新特性函数接口方法引用函数式编程函数式编程更多时候是一种编程的思维方式,是一种方法论.函数式与命令式编程区别主要在于:函数式编程是告诉代码你要做什么,而命令式编程则是告诉 ...
- jxcel - 好用的Excel与Java对象转换工具
更多精彩博文,欢迎访问我的个人博客 Jxcel简介 Jxcel是一个支持Java对象与Excel(目前仅xlsx.xls)互相转换的工具包. 项目地址:https://github.com/jptan ...
- Microsoft Windows Server 部署
Microsoft Windows Server 部署 多重引导 计算机可以被设置多重引导,即在一台计算机上安装多个操作系统..在安装多重引导的操作系统时,还要注意版本的类型,一般应先安装版本低的,再 ...
- Spring Data Redis入门示例:字符串操作(六)
Spring Data Redis对字符串的操作,封装在了ValueOperations和BoundValueOperations中,在集成好了SPD之后,在需要的地方引入: // 注入模板操作实例 ...
- C++变量和基本类型
1. 如何选择类型的准则 当明确知晓数值不可能为负的时候,应该选择无符号类型. 使用int执行整数运算的时候,在实际应用中,short常常显得太小而long一般和int有一样的尺寸,如果数值超过了in ...
- JS中的setInterval 函数体带参数f方法
1.setInterval(function code,delaytime); 在设置自动调用执行function code时,我们可以采用下面三种方式来解决. 一.采用字符串形式:(参数不能被周期性 ...
- style对象的cssText方法
cssText 本质是什么? cssText 的本质就是设置 HTML 元素的 style 属性值. cssText 怎么用? domElement.style.cssText = "col ...