import numpy as np
import cv2 cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
eye_cascade = cv2.CascadeClassifier("data/haarcascade_eye.xml")
smile_cascade = cv2.CascadeClassifier("data/haarcascade_smile.xml")
# img = cv2.imread("img/test1.jpg") while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
roi_gray = gray[y : y + h, x : x + w]
roi_color = img[y : y + h, x : x + w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
# smile = smile_cascade.detectMultiScale(
# roi_gray,
# scaleFactor=1.16,
# minNeighbors=35,
# minSize=(25, 25),
# flags=cv2.CASCADE_SCALE_IMAGE,
# )
# for (x2, y2, w2, h2) in smile:
# cv2.rectangle(roi_color, (x2, y2), (x2 + w2, y2 + h2), (255, 0, 0), 2)
# cv2.putText(img, "Smile", (x, y - 7), 3, 1.2, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow("img", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break

  加点代码实现实时磨皮效果,sigmaSpace值取的越大,循环次数越多运行越卡,可以只对脸部区域磨皮、但是一旦失去脸部焦点,瞬间被打回原形。

import numpy as np
import cv2 cap = cv2.VideoCapture(0)
face_cascade = cv2.CascadeClassifier("data/haarcascade_frontalface_default.xml")
eye_cascade = cv2.CascadeClassifier("data/haarcascade_eye.xml")
smile_cascade = cv2.CascadeClassifier("data/haarcascade_smile.xml")
# img = cv2.imread("img/test1.jpg") while True:
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
img = cv2.bilateralFilter(src=img, d=0, sigmaColor=50, sigmaSpace=5)
roi_gray = gray[y : y + h, x : x + w]
roi_color = img[y : y + h, x : x + w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex, ey, ew, eh) in eyes:
cv2.rectangle(roi_color, (ex, ey), (ex + ew, ey + eh), (0, 255, 0), 2)
# smile = smile_cascade.detectMultiScale(
# roi_gray,
# scaleFactor=1.16,
# minNeighbors=35,
# minSize=(25, 25),
# flags=cv2.CASCADE_SCALE_IMAGE,
# )
# for (x2, y2, w2, h2) in smile:
# cv2.rectangle(roi_color, (x2, y2), (x2 + w2, y2 + h2), (255, 0, 0), 2)
# cv2.putText(img, "Smile", (x, y - 7), 3, 1.2, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow("img", img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break

  

opencv+python实时人脸检测、磨皮的更多相关文章

  1. OpenCV + python 实现人脸检测(基于照片和视频进行检测)

    OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...

  2. 手把手教你如何用 OpenCV + Python 实现人脸检测

    配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...

  3. Python 3 利用 Dlib 实现摄像头实时人脸检测和平铺显示

    1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的 ...

  4. OpenCV例程实现人脸检测

    前段时间看的OpenCV,其实有很多的例子程序,参考代码值得我们学习,对图像特征提取三大法宝:HOG特征,LBP特征,Haar特征有一定了解后. 对本文中的例子程序刚开始没有调通,今晚上调通了,试了试 ...

  5. OpenCV入门指南----人脸检测

    本篇介绍图像处理与模式识别中最热门的一个领域——人脸检测(人脸识别).人脸检测可以说是学术界的宠儿,在不少EI,SCI高级别论文都能看到它的身影.甚至很多高校学生的毕业设计都会涉及到人脸检测.当然人脸 ...

  6. Opencv摄像头实时人脸识别

    Introduction 网上存在很多人脸识别的文章,这篇文章是我的一个作业,重在通过摄像头实时采集人脸信息,进行人脸检测和人脸识别,并将识别结果显示在左上角. 利用 OpenCV 实现一个实时的人脸 ...

  7. HAAR与DLib的实时人脸检测之实现与对比

    人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸, ...

  8. Android 中使用 dlib+opencv 实现动态人脸检测

    1 概述 完成 Android 相机预览功能以后,在此基础上我使用 dlib 与 opencv 库做了一个关于人脸检测的 demo.该 demo 在相机预览过程中对人脸进行实时检测,并将检测到的人脸用 ...

  9. OpenCV神技——人脸检测,猫脸检测

    简介   OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 ...

随机推荐

  1. Law of large numbers and Central limit theorem

    大数定律 Law of large numbers (LLN) 虽然名字是 Law,但其实是严格证明过的 Theorem weak law of large number (Khinchin's la ...

  2. WPBakery Page Builder页面生成器6.0 汉化版

    WPBakery Page Builder 是一个可视化编辑器插件 ,相较于WP自带的编辑器使用起来更加方便,同时功能更 加强大,完全的可视化操作,使用比较简单,国外有多款主题需要使用插件. WPBa ...

  3. freemarker技术入门例子(结合struts2)

    由于最近项目里面要求要使用freemarker技术来做展现层,所以在网上搜索了好多资料,基础知识是看了李刚原来写的那本<struts2权威指南>.一直想在网上找一个很基础的例子来入门,但是 ...

  4. DevOps - 自动化工具

    章节 DevOps – 为什么 DevOps – 与传统方式区别 DevOps – 优势 DevOps – 不适用 DevOps – 生命周期 DevOps – 与敏捷方法区别 DevOps – 实施 ...

  5. docker-jenkins SSH Publishers时踩的坑

    source相对路径问题,不是 /var/jenkins_home/workspace/build-renren/target/renren-fast.war  或环境变量,而是  target/re ...

  6. Android拷贝工程不覆盖原工程的配置方法

    http://www.2cto.com/kf/201203/125131.html 在Eclipse中改包名的时候选择refactor-->rename,勾选Rename subpackages ...

  7. uboot源码分析1-启动第一阶段

    1.不简单的头文件包含 #include <config.h>:这个文件的内容其实是包含了一个头文件:#include <configs/x210_sd.h>". # ...

  8. TFIDF介绍

    简介 全称: Term Frequency-inverse document frequency(文本频率与逆文档频率指数) 目的: 表征一个token(可以是一个字或者一个词)的重要程度 是Elas ...

  9. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 字体图标(Glyphicons):glyphicon glyphicon-search

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...

  10. java 根据值获取枚举对象

    关键方法: /** * 值映射为枚举 * * @param enumClass 枚举类 * @param value 枚举值 * @param method 取值方法 * @param <E&g ...