首先看到与或,很显然想到按照位拆分运算。然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可。记录c[i][j]表示以a[i][j]在该位向上0/1的长度。然后对于每一行,单调栈求解即可。

#include<bits/stdc++.h>
using namespace std;
const int N=,mod=1e9+;
int n,ans1,ans2,top,a[N][N],b[N][N],c[N][N],st[N],sum[N];
int calc()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
c[i][j]=b[i][j]?c[i-][j]+:;
int ret=;
for(int i=;i<=n;i++)
{
st[]=top=;
for(int j=;j<=n;j++)
if(!c[i][j])st[]=j,top=;
else{
while(top&&c[i][j]<=c[i][st[top]])top--;
st[++top]=j,sum[top]=(sum[top-]+1ll*(j-st[top-])*c[i][j])%mod;
ret=(ret+sum[top])%mod;
}
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
for(int t=;t<=;t++)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
b[i][j]=(a[i][j]>>t)&;
ans1=(ans1+(1ll<<t)*calc())%mod;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
b[i][j]^=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans2=(ans2+1ll*(n-i+)*(n-j+)%mod*(1ll<<t))%mod;
ans2=(ans2-(1ll<<t)*calc()%mod+mod)%mod;
}
printf("%d %d",ans1,ans2);
}

[GX/GZOI2019]与或和(单调栈+按位运算)的更多相关文章

  1. [LOJ3083][GXOI/GZOI2019]与或和——单调栈

    题目链接: [GXOI/GZOI2019]与或和 既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵. 对于或运算,就是求有多少个子矩形中有$1$. 直接求不好办,考虑有多 ...

  2. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  3. [GXOI/GZOI2019]与或和(单调栈)

    想了想决定把这几题也随便水个解题报告... bzoj  luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...

  4. 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)

    [BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...

  5. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  6. 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】

    题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...

  7. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

  8. [GXOI/GZOI2019]与或和(位运算,单调栈)

    题目链接懒得放了. 题目大意懒得写了. 省选原题哪有找不到的…… 说实话,其实这题是个大水题,被我十秒钟内口胡出来了. 首先位运算除了拆位还能干啥?以下以与为例,或是差不多的. 我们考虑有多少个子矩阵 ...

  9. 单调栈求全1(或全0)子矩阵的个数 洛谷P5300与或和 P3400仓鼠窝

    爆零好爽,被中学生虐好爽,还好我毕业得早 求全1(或全0)子矩阵的个数,看了题解有好几种思路,我学了三种,但有两种不是很理解,而且也没另外那个跑得快,所以简单讲述一一下我会的那种来自Caro23333 ...

随机推荐

  1. 二十九、CI框架之session用法

    一.我们在控制器中添加session写入和读取的2个函数,如图: 二.我们用浏览器访问login页面,可以看到有一串被加密的cookies,在CI中session也是以cookies的方式存放的 三. ...

  2. WindowsForm ComboBoxList 下拉框带复选框 可以动态添加

    先来张效果图: 1.这里需要对控件进行重写,详细内容如下,对此不感兴趣的可以直接跳过这步,下载本人生成的dll,直接看第二小结,下载链接https://pan.baidu.com/s/1gfzrK5t ...

  3. Centos 7.4 DNS域名解析

    1.安装部署包 yum -y install bind bind-utils bind-chroot 2.启动服务并设置开机自启动 [root@localhost ~]# systemctl star ...

  4. python可移植支持代码;用format.节省打印输出参数代码;math模块;

    1.多平台移植代码: #!/usr/bin/env python3 这一行比较特殊,称为 shebang 行,在 Python 脚本中,你应该一直将它作为第一行. 请注意行中的第一个字符是井号(#). ...

  5. Python调用c++可执行程序

    1.c++编译程序 #include <iostream> using namespace std; int test() { , b = ; return a+b; } int main ...

  6. jquery ajax常用的登录登出

    整理jquery+ajax的登录登出方法. //登录 var currentUserId = -1; $(function() { var timestamp = (new Date()).value ...

  7. POJ 1466:Girls and Boys 二分图的最大点独立集

    Girls and Boys Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 11097   Accepted: 4960 D ...

  8. hdu 3483 矩阵乘法

    这个题目上周对抗赛题目,搞了我好久 对数学这种不是很敏感 其实都不是自己想出来的,看其他的资料和博客的推导 还是有点难度的,反正我是推不出来 通过二项式定理的化简 有两个博客写得比较好 http:// ...

  9. “杀死”纸质名片!HiHello能重构商业关系网吗?

    在当下的互联网时代,要添加好友去扩大自己的社交圈似乎是再简单不过.随便点击一个微信名片.与其他网友互相关注微博等,好像就又搭建了一个社交节点.暂且不讨论这些好友关系的质量问题,单是这样的方式并不适合于 ...

  10. str_replace用法

    语法 str_replace(find,replace,string,count) 参数 描述 find 必需.规定要查找的值. replace 必需.规定替换 find 中的值的值. string ...