首先看到与或,很显然想到按照位拆分运算。然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可。记录c[i][j]表示以a[i][j]在该位向上0/1的长度。然后对于每一行,单调栈求解即可。

#include<bits/stdc++.h>
using namespace std;
const int N=,mod=1e9+;
int n,ans1,ans2,top,a[N][N],b[N][N],c[N][N],st[N],sum[N];
int calc()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
c[i][j]=b[i][j]?c[i-][j]+:;
int ret=;
for(int i=;i<=n;i++)
{
st[]=top=;
for(int j=;j<=n;j++)
if(!c[i][j])st[]=j,top=;
else{
while(top&&c[i][j]<=c[i][st[top]])top--;
st[++top]=j,sum[top]=(sum[top-]+1ll*(j-st[top-])*c[i][j])%mod;
ret=(ret+sum[top])%mod;
}
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
for(int t=;t<=;t++)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
b[i][j]=(a[i][j]>>t)&;
ans1=(ans1+(1ll<<t)*calc())%mod;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
b[i][j]^=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans2=(ans2+1ll*(n-i+)*(n-j+)%mod*(1ll<<t))%mod;
ans2=(ans2-(1ll<<t)*calc()%mod+mod)%mod;
}
printf("%d %d",ans1,ans2);
}

[GX/GZOI2019]与或和(单调栈+按位运算)的更多相关文章

  1. [LOJ3083][GXOI/GZOI2019]与或和——单调栈

    题目链接: [GXOI/GZOI2019]与或和 既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵. 对于或运算,就是求有多少个子矩形中有$1$. 直接求不好办,考虑有多 ...

  2. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  3. [GXOI/GZOI2019]与或和(单调栈)

    想了想决定把这几题也随便水个解题报告... bzoj  luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...

  4. 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)

    [BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...

  5. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  6. 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】

    题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...

  7. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

  8. [GXOI/GZOI2019]与或和(位运算,单调栈)

    题目链接懒得放了. 题目大意懒得写了. 省选原题哪有找不到的…… 说实话,其实这题是个大水题,被我十秒钟内口胡出来了. 首先位运算除了拆位还能干啥?以下以与为例,或是差不多的. 我们考虑有多少个子矩阵 ...

  9. 单调栈求全1(或全0)子矩阵的个数 洛谷P5300与或和 P3400仓鼠窝

    爆零好爽,被中学生虐好爽,还好我毕业得早 求全1(或全0)子矩阵的个数,看了题解有好几种思路,我学了三种,但有两种不是很理解,而且也没另外那个跑得快,所以简单讲述一一下我会的那种来自Caro23333 ...

随机推荐

  1. 对input type=file 修改样式

    效果图先给: 在html中涉及到文件选择的问题,文件选择使用 input(class="filter_input form-control" type="file) 但是 ...

  2. gentoo 修改键盘映射

    gentoo 上面修改键盘映射分为两种,一种是终端环境,一种是X环境. 终端环境 https://www.emacswiki.org/emacs/MovingTheCtrlKey https://wi ...

  3. LeetCode——39. 组合总和

    给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制重复被选 ...

  4. centos系统 通过命名查找需要安装哪个安装包 command not found

    场景: 服务器未安装命令,但是我们需要使用,不知道该安装什么包,以sz命令为例 [root@localhost linshi]# sz tes.sh -bash: /usr/bin/sz: 没有那个文 ...

  5. 吴裕雄--天生自然C++语言学习笔记:C++ 变量类型

    变量其实只不过是程序可操作的存储区的名称.C++ 中每个变量都有指定的类型,类型决定了变量存储的大小和布局,该范围内的值都可以存储在内存中,运算符可应用于变量上. 变量的名称可以由字母.数字和下划线字 ...

  6. 201771010123汪慧和《面向对象程序设计Java》第十七周实验总结

    一.理论部分 1.多线程并发执行中的问题 ◆多个线程相对执行的顺序是不确定的. ◆线程执行顺序的不确定性会产生执行结果的不确定性. ◆在多线程对共享数据操作时常常会产生这种不确定性. 2.线程的同步 ...

  7. VS程序不显示控制台

    之所以会有这样的想法是因为,有时候我会用到一些库,这些库在使用的时候会在控制台输出一些信息,虽然这是无可厚非的事情,但是,如果我写了一个界面,这个时候当然是希望要显示什么就显示在界面上,或者就不要显示 ...

  8. Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory

    题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...

  9. delphi 文本 记录 流式 读写文件

    unit Unit1; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System ...

  10. vmbox 导入虚拟电脑之后无法上网

    先执行 ip addr 查看有没有分配ip 用root执行dhclient -v命令去通过DHCP协议获取一个ip,在下图的最后一行可以看到ip已经分配成功dhclient命令可以用来释放你的电脑的I ...