A Simple Problem with Integers

Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 163977   Accepted: 50540
Case Time Limit: 2000MS

Description

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.
 
题意:  Q查询区间和;C,将区间[x,y]的数都加上z
 
#include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#define ll long long
using namespace std;
ll tree[], lazy[], len[];//tree[num]存的是节点num所在区间的区间和
void pushdown(ll num)
{
if (lazy[num] != )
{
tree[num * ] = tree[num * ] + lazy[num] * len[num * ];
tree[num * + ] = tree[num * + ] + lazy[num] * len[num * + ];
lazy[num * ] = lazy[num * ] + lazy[num];
lazy[num * + ] = lazy[num * + ] + lazy[num];
lazy[num] = ;
}
} void build(ll num, ll le, ll ri)
{
len[num] = ri - le + ;//区间长度
if (le == ri)
{
scanf("%lld", &tree[num]);
return;
}
ll mid = (le + ri) / ;
build(num * , le, mid);
build(num * + , mid + , ri);
tree[num] = tree[num * ] + tree[num * + ];
} void update(ll num, ll le, ll ri, ll x, ll y, ll z)
{
if (x <= le && ri <= y)
{
lazy[num] = lazy[num] + z;
tree[num] = tree[num] + len[num] * z;//更新区间和
return;
}
pushdown(num);
ll mid = (le + ri) / ;
if (x <= mid)
update(num * , le, mid, x, y, z);
if (y > mid)
update(num * + , mid + , ri, x, y, z);
tree[num]=tree[num*]+tree[num*+];
} ll query(ll num, ll le, ll ri, ll x, ll y)
{
if (x <= le && ri <= y)//查询区间在num节点所在区间内
return tree[num];
pushdown(num);
ll mid = (le + ri) / ;
ll ans = ;
if (x <= mid)
ans = ans + query(num * , le, mid, x, y);
if (y > mid)
ans = ans + query(num * + , mid + , ri, x, y);
return ans;
}
int main()
{
ll n, m;
scanf("%lld%lld", &n, &m);
build(, , n);
while (m--)
{
char c[];
scanf("%s", c);
if (c[] == 'Q')
{
ll x, y;
scanf("%lld%lld", &x, &y);
printf("%lld\n", query(, , n, x, y));
}
else
{
ll x, y, z;
scanf("%lld%lld%lld", &x, &y, &z);
update(, , n, x, y, z);
}
}
return ;
}

POJ 3468 区间更新(求任意区间和)A Simple Problem with Integers的更多相关文章

  1. 【成端更新线段树模板】POJ3468-A Simple Problem with Integers

    http://poj.org/problem?id=3468 _(:зゝ∠)_我又活着回来啦,前段时间太忙了写的题没时间扔上来,以后再说. [问题描述] 成段加某一个值,然后询问区间和. [思路] 讲 ...

  2. poj 3468 A Simple Problem with Integers 线段树区间更新

    id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072 ...

  3. POJ 3468 A Simple Problem with Integers(树状数组区间更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 97217   ...

  4. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  5. poj 3468 A Simple Problem with Integers(线段树+区间更新+区间求和)

    题目链接:id=3468http://">http://poj.org/problem? id=3468 A Simple Problem with Integers Time Lim ...

  6. poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 75541   ...

  7. POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92632   ...

  8. [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]

    A Simple Problem with Integers   Description You have N integers, A1, A2, ... , AN. You need to deal ...

  9. POJ 3468:A Simple Problem with Integers(线段树区间更新模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 141093 ...

随机推荐

  1. 图像分割利用KMeans生成灰度图

    import numpy as np import PIL.Image as image from sklearn.cluster import KMeans def loadData(filePat ...

  2. 【转】路由转发过程的IP及MAC地址变化

    A-----(B1-B2)-----(C1-C2)-------E 就假设拓扑图是这个样子吧,B1和B2是路由器B上的两个接口,C1和C2是路由器C上的两个接口,A和E是PC,由主机A向主机E发送数据 ...

  3. Windows驱动开发-手动创建IRP

    手动创建IRP有以下几个步骤: 1,先得到设备的指针,一种方法是用IoGetDeviceObjectPointer内核函数得到设备对象指针,另外一种方法是用zwCreateFile内核函数先得到设备句 ...

  4. 《SQL 进阶教程》 查找局部不一致的数据

    -- 从下面这张商品表里找出价格相等的商品的组合 select * from products p1LEFT JOIN products p2on p1.price = p2.price and p1 ...

  5. 第1节 Scala基础语法:9、10、数组

    1. 定义数组时,没有new和有new是有区别的: scala> val arr3 = Array[Int](2)    此时,arr3中仅包含1个元素2arr3: Array[Int] = A ...

  6. 【PAT甲级】1037 Magic Coupon (25 分)

    题意: 输入一个正整数N(<=1e5),接下来输入N个整数.再输入一个正整数M(<=1e5),接下来输入M个整数.每次可以从两组数中各取一个,求最大的两个数的乘积的和. AAAAAccep ...

  7. MySQL数据库索引:索引介绍和使用原则

    本篇目录: 一.数据页与索引页 二.聚簇索引与非聚簇索引 三.唯一索引 四.索引的创建 五.索引的使用规则 六.数据库索引失效情况 本篇正文: 一.数据页与索引页 数据库的表存储分为数据页存储和索引页 ...

  8. LTE 网元功能

    E-NodeB : 无线资源管理,无线承载控制.无线接入控制.连接移动性控制.UE的上下行动态资源分配 IP头压缩及用户数据流加密 UE连接期间选择MME 路由用户面数据至S-GW 寻呼消息的组织和发 ...

  9. Github 第三方授权登录教程

    Github 第三方授权登录教程 ####大致流程图 ####1.首先注册一个github帐号,Applications>Developer applications>Register a ...

  10. RadioButton 用法

    @Html.RadioButton("rdoNotice", "1ST", true, new { id = "rdoFirstNotice" ...